17.已知復(fù)數(shù)z滿足$\frac{z+3i}{z-i}$=3,i是虛數(shù)單位,則$\overline{z}$( 。
A.1+3iB.1-3iC.3iD.-3i

分析 利用復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義即可得出.

解答 解:∵$\frac{z+3i}{z-i}$=3,∴z+3i=3z-3i,∴z=3i,
則$\overline{z}$=-3i,
故選:D.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.等差數(shù)列{an}的前n項(xiàng)和為Sn,已知S3=a1+4a2,a5=7,則a1=( 。
A.1B.-1C.$\frac{1}{9}$D.-$\frac{1}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知點(diǎn)A(6,2),B(3,2),動(dòng)點(diǎn)M滿足|MA|=2|MB|.
(1)求點(diǎn)M的軌跡方程;
(2)設(shè)M的軌跡與y軸的交點(diǎn)為P,過(guò)P作斜率為k的直線l與M的軌跡交于另一點(diǎn)Q,若C(1,2k+2),求△CPQ面積的最大值,并求出此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,正方形ACDE所在的平面與平面ABC垂直,M是CE和AD的交點(diǎn),AC⊥BC,且AC=BC.
(1)求證:AM⊥平面EBC;
(2)求直線AB與平面EBC所成的角的大;
(3)求二面角A-EB-C的大小.
(4)你認(rèn)為求二面角常用的方法有哪些?請(qǐng)按應(yīng)用的重要程度寫出3種,并就其中一種方法談?wù)勊膽?yīng)用條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在極坐標(biāo)系中,圓C是以點(diǎn)$C({2,-\frac{π}{6}})$為圓心,2為半徑的圓.
(1)求圓C的極坐標(biāo)方程;
(2)求圓C被直線$l:θ=\frac{π}{6}$所截得的弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.平行四邊形ABCD中,∠BAD=60°,AB=1,AD=$\sqrt{2}$,P為平行四邊形內(nèi)一點(diǎn),且AP=$\frac{\sqrt{2}}{2}$,若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AD}$(λ,μ∈R),則λ+$\sqrt{2}$μ的最大值為$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.如果直線ax-by+5=0(a>0,b>0)和函數(shù)f(x)=mx+1+1(m>0,m≠1)的圖象恒過(guò)一個(gè)定點(diǎn),且該定點(diǎn)始終落在圓(x-a+1)2+(y+b+$\frac{1}{2}$)2=$\frac{85}{4}$的內(nèi)部或圓上,那么$\frac{ab}{2a+b}$的取值范圍是[$\frac{3}{7}$,$\frac{5}{9}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-1,x<0}\\{5x,0≤x<1}\\{x+7,x≥1}\end{array}\right.$,畫出求函數(shù)值的算法框圖,并寫出相應(yīng)的算法語(yǔ)句.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在同一直角坐標(biāo)系中,圓錐曲線C通過(guò)伸縮變換φ:$\left\{\begin{array}{l}{x′=\frac{1}{3}x}\\{y′=\frac{1}{2}y}\end{array}\right.$變成曲線x2+y2=1,則曲線C的離心率為( 。
A.$\frac{{\sqrt{5}}}{3}$B.$\frac{2}{3}$C.$\frac{1}{3}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案