如圖,對(duì)每個(gè)正整數(shù)n,An(xn,yn)是拋物線x2=4y上的點(diǎn),過焦點(diǎn)F的直線FAn交拋物線于另一點(diǎn)Bn(sn,tn).

(Ⅰ)試證:xnsn=-4(n+≥1);

(Ⅱ)取xn=2n,并記Cn為拋物線上分別以An與Bn為切點(diǎn)的兩條切線的交點(diǎn).試證:|FC1|+|FC2|+…+|FCn|=2n-2-n+1+1.

答案:
解析:

  證明:(Ⅰ)對(duì)任意固定的,因?yàn)榻裹c(diǎn),所以可設(shè)直線的方程為,將它與拋物線方程聯(lián)立,

  得,由一元二次方程根與系數(shù)的關(guān)系得

  (Ⅱ)對(duì)任意固定的,利用導(dǎo)數(shù)知識(shí)易得拋物線處的切線的斜率,故處的切線方程為,①

  類似地,可求得處的切線方程為,②

  由②減去①得

  從而,,③

  將③代入①并注意到得交點(diǎn)的坐標(biāo)為

  由兩點(diǎn)間距離公式,得

 。.從而

  現(xiàn)在,利用上述已證結(jié)論并由等比數(shù)列求和公式得,

  

  

 。


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,對(duì)每個(gè)正整數(shù)n,An(xn,yn)是拋物線x2=4y上的點(diǎn),過焦點(diǎn)F的直線FAn交拋物線于另一點(diǎn)Bn(sn,tn).
(Ⅰ)試證:xnsn=-4(n≥1);
(Ⅱ)取xn=2n,并記Cn為拋物線上分別以An與Bn為切點(diǎn)的兩條切線的交點(diǎn).試證:|FC1|+|FC2|+…+|FCn|=2n-2-n+1+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:重慶市高考真題 題型:證明題

如圖,對(duì)每個(gè)正整數(shù)n,An(xn,yn)是拋物線x2=4y上的點(diǎn),過焦點(diǎn)F的直線FAn交拋物線于另一點(diǎn)Bn(sn,tn),
(Ⅰ)試證:xnsn=-4(n≥1);
(Ⅱ)取xn=2n,并記Cn為拋物線上分別以An與Bn為切點(diǎn)的兩條切線的交點(diǎn).試證:|FC1|+|FC2|+…+|FCn|=2n-2-n+1+1(n≥1)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(22)如圖,對(duì)每個(gè)正整數(shù)n,An(xn,yn)是拋物線x2=4y上的點(diǎn),過焦點(diǎn)F的直線FA.交拋物線于另一點(diǎn)Bn(sn,tn).

(Ⅰ)試證:xnsn=-4(n≥1);

(Ⅱ)取xn=2n,并記Cn為拋物線上分別以An與Bn為切點(diǎn)的兩條切線的交點(diǎn).試證:

|FC1|+|FC2|+…+|FCn|=2n-2-n+1+1(n≥1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年江蘇省南通市啟東中學(xué)高三(上)12月階段考試數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,對(duì)每個(gè)正整數(shù)n,An(xn,yn)是拋物線x2=4y上的點(diǎn),過焦點(diǎn)F的直線FAn交拋物線于另一點(diǎn)Bn(sn,tn).
(Ⅰ)試證:xnsn=-4(n≥1);
(Ⅱ)取xn=2n,并記Cn為拋物線上分別以An與Bn為切點(diǎn)的兩條切線的交點(diǎn).試證:|FC1|+|FC2|+…+|FCn|=2n-2-n+1+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006年重慶市高考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,對(duì)每個(gè)正整數(shù)n,An(xn,yn)是拋物線x2=4y上的點(diǎn),過焦點(diǎn)F的直線FAn交拋物線于另一點(diǎn)Bn(sn,tn).
(Ⅰ)試證:xnsn=-4(n≥1);
(Ⅱ)取xn=2n,并記Cn為拋物線上分別以An與Bn為切點(diǎn)的兩條切線的交點(diǎn).試證:|FC1|+|FC2|+…+|FCn|=2n-2-n+1+1.

查看答案和解析>>

同步練習(xí)冊(cè)答案