【題目】已知四棱錐中,底面,,,,.
(1)當(dāng)變化時(shí),點(diǎn)到平面的距離是否為定值?若是,請(qǐng)求出該定值;若不是,請(qǐng)說明理由;
(2)當(dāng)直線與平面所成的角為45°時(shí),求二面角的余弦值.
【答案】(1)見解析;(2)
【解析】
(1)根據(jù)幾何關(guān)系得到面,進(jìn)而得到點(diǎn)面距離;(2)根據(jù)線面角得到,所以,建立坐標(biāo)系求得面的法向量由向量夾角的計(jì)算公式,進(jìn)而得到二面角的余弦值.
(1)由,,知,則,
由面,面得,由,,面,
則面,則點(diǎn)到平面的距離為一個(gè)定值,.
(2)由面,為在平面上的射影,則為直線與平面
所成的角,則,所以.
由,得,故直線、、兩兩垂直,因此,以點(diǎn)
為坐標(biāo)原點(diǎn),以、、所在的直線分別為軸、軸、軸建立如圖所示的空間
直角坐標(biāo)系,易得,,,于是,,
設(shè)平面的法向量為,則,即,取,則
,,于是;顯然為平面的一個(gè)法向量,
于是,
分析知二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的短軸長為,且橢圓的一個(gè)焦點(diǎn)在圓上.
(1)求橢圓的方程;
(2)已知橢圓的焦距小于,過橢圓的左焦點(diǎn)的直線與橢圓相交于兩點(diǎn),若,求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)為拋物線的焦點(diǎn),過點(diǎn)的直線交拋物線于、兩點(diǎn),點(diǎn)在拋物線上,使得的重心在軸上,直線交軸于點(diǎn),且在點(diǎn)的右側(cè).記、的面積分別、.
(1)求的值及拋物線的方程;
(2)求的最小值及此時(shí)點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:極坐標(biāo)與參數(shù)方程]
在直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)若射線 與曲線交于,兩點(diǎn),與曲線交于,兩點(diǎn),求取最大值時(shí)的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:圓心到直線的距離與圓的半徑之比為直線關(guān)于圓的距離比.
(1)設(shè)圓求過(2,0)的直線關(guān)于圓的距離比的直線方程;
(2)若圓與軸相切于點(diǎn)(0,3)且直線= 關(guān)于圓的距離比,求此圓的的方程;
(3)是否存在點(diǎn),使過的任意兩條互相垂直的直線分別關(guān)于相應(yīng)兩圓的距離比始終相等?若存在,求出相應(yīng)的點(diǎn)點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,平面,, .,,,是的中點(diǎn).
(Ⅰ)證明:⊥平面;
(Ⅱ)若二面角的余弦值是,求的值;
(Ⅲ)若,在線段上是否存在一點(diǎn),使得⊥. 若存在,確定點(diǎn)的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著城市地鐵建設(shè)的持續(xù)推進(jìn),市民的出行也越來越便利.根據(jù)大數(shù)據(jù)統(tǒng)計(jì),某條地鐵線路運(yùn)行時(shí),發(fā)車時(shí)間間隔t(單位:分鐘)滿足:4≤t≤15,N,平均每趟地鐵的載客人數(shù)p(t)(單位:人)與發(fā)車時(shí)間間隔t近似地滿足下列函數(shù)關(guān)系:,其中.
(1)若平均每趟地鐵的載客人數(shù)不超過1500人,試求發(fā)車時(shí)間間隔t的值.
(2)若平均每趟地鐵每分鐘的凈收益為(單位:元),問當(dāng)發(fā)車時(shí)間間隔t為多少時(shí),平均每趟地鐵每分鐘的凈收益最大?井求出最大凈收益.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com