若某幾何體的三視圖(單位:cm)如圖所示(依次為正視圖、側(cè)視圖、俯視圖),則此幾何體的體積是
 
cm3
考點:由三視圖求面積、體積
專題:空間位置關系與距離
分析:根據(jù)三視圖判斷幾何體為一個以俯視圖為底面的三棱錐,求出幾何體的底面積和高,代入棱錐體積公式,可得答案.
解答: 解:根據(jù)三視圖判斷幾何體為一個以俯視圖為底面的三棱錐,
底面的底邊長為4cm,高為3cm,
故底面面積S=
1
2
×4×3=6cm2,
棱錐的高h=2cm,
故棱錐的體積V=
1
3
Sh
=4cm3
故答案為:4
點評:本題考查了由三視圖求幾何體的表面積與體積,根據(jù)三視圖判斷相關幾何量的數(shù)據(jù)是解答問題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

方程2x+3x-7=0在下列哪個區(qū)間有實根( 。
A、(-1,0)
B、(0,1)
C、(1,2)
D、(0,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin2x向左平移
π
6
個單位后,得到函數(shù)y=g(x),下列關于y=g(x)的說法正確的是( 。
A、一個対稱中心為(-
π
3
,0)
B、x=-
π
6
是其一個對稱軸
C、減區(qū)間為[
π
12
+kπ,
12
+kπ],k∈Z
D、增區(qū)間為[kπ,
π
12
+kπ],k∈Z

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若向量
a
=(1,λ,2),
b
=(2,-1,2).
a
b
夾角的余弦值是
8
9
,則λ的值為( 。
A、2B、-2C、-3D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a>0,b>0,且函數(shù)f(x)=4x3-ax2-2bx-2在x=1處有極值,則ab的最大值(  )
A、2B、3C、6D、9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設m,n是兩條不同的直線,α,β是兩個不同的平面,給出下列四個命題:
①如果m∥α,n?α,那么m∥n;
②如果m⊥α,m⊥β,那么α∥β;
③如果α⊥β,m⊥α,那么m∥β;
④如果α⊥β,α∩β=m,m⊥n,那么n⊥β.
其中正確的命題是(  )
A、①B、②C、③D、④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a=2log52,b=21.1,c=(
1
2
)-0.8
,則a、b、c的大小關系是( 。
A、.a<c<b
B、c<b<a
C、a<b<c
D、b<c<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)是定義在(0,+∞)上的增函數(shù),則不等式f(x)>f(8x-16)的解集是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是一次函數(shù),且滿足3f(x+1)-2f(x-1)=2x+6,求f(x).

查看答案和解析>>

同步練習冊答案