定義:如果函數(shù)y=f(x)在區(qū)間[a,b]上存在x1,x2(a<x1<x2<b),滿足f′(x1)=
f(b)-f(a)
b-a
,f′(x2)=
f(b)-f(a)
b-a
,則稱函數(shù)y=f(x)在區(qū)間[a,b]上的一個雙中值函數(shù),已知函數(shù)f(x)=
1
3
x3-x2+a是區(qū)間[0,a]上的雙中值函數(shù),則實數(shù)a的取值范圍是( 。
A、(0,
3
2
B、(
3
2
,3)
C、(
1
2
,3)
D、(1,3)
考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)單調(diào)性的判斷與證明
專題:新定義
分析:根據(jù)題目給出的定義可得f′(x1)=f′(x2)=
f(a)-f(0)
a
=
1
3
a3-a2
a
=
1
3
a2-a
,即方程x2-2x=
1
3
a2-a
在區(qū)間(0,a)有兩個解,利用二次函數(shù)的性質(zhì)可知實數(shù)a的取值范圍是(
3
2
,3)
解答: 解:由題意可知,
在區(qū)間[0,a]存在x1,x2(a<x1<x2<b),
滿足f′(x1)=f′(x2)=
f(a)-f(0)
a
=
1
3
a3-a2
a
=
1
3
a2-a
,
∵f(x)=
1
3
x3-x2+a,
∴f′(x)=x2-2x,
∴方程x2-2x=
1
3
a2-a
在區(qū)間(0,a)有兩個解.
g(x)=x2-2x-
1
3
a2+a
,(0<x<a)
△=4+
4
3
a2-4a>0
g(0)=-
1
3
a2+a>0
g(a)=
2
3
a2-a>0
a>0
,
解得,
3
2
<a<3

∴實數(shù)a的取值范圍是(
3
2
,3)

故選:B.
點評:本題主要考查了導(dǎo)數(shù)的幾何意義,二次函數(shù)的性質(zhì)與方程根的關(guān)系,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,P為不等式組
y-3≤0
3x+y-6≥0
x-y-2≤0
所表示的平面區(qū)域內(nèi)一動點,則線段|OP|的最小值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
e1
、
e2
是兩個不共線的向量,
a
=3
e1
+4
e2
,
b
=
e1
-2
e2
.若以
a
、
b
為基底表示向量
e1
+2
e2
,即
e1
+2
e2
a
b
,則λ+μ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=1+i,則
1
z
+
.
z
對應(yīng)的點所在的象限為( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,點M是BC中點.若∠A=120°,
AB
AC
=-
1
2
,則|
AM
|
的最小值是(  )
A、
2
B、
2
2
C、
3
2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示的程序框圖描述的算法稱為歐幾里得輾轉(zhuǎn)相除法,若輸入m=2010,n=1541,則輸出的m的值為( 。
A、2010B、1541
C、134D、67

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列4個命題中,真命題的個數(shù)是(  )
①如果a>0且a≠1,那么logaf(x)=logag(x)的充要條件是af(x)=ag(x)
②如果A、B為△ABC的兩個內(nèi)角,那么A>B的充要條件是sinA>sinB
③如果向量
a
與向量
b
均為非零向量,那么(
a
b
)2=
a
2
b
2

④函數(shù)f(x)=
sin2x+2
|sinx|
的最小值為2
2
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列x1,x2,x3…x9的公差為1,隨機(jī)變量ξ等可能的取值x1,x2,x3…x9,則方差D(ξ)為( 。
A、
10
3
B、
20
3
C、
10
9
D、
20
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C的頂點在坐標(biāo)原點,焦點在x軸上,拋物線C上的點M(2,m)到焦點F的距離為3.
(Ⅰ)求拋物線C的方程:
(Ⅱ)過點(2,0)的直線l與拋物線C交于A、B兩點,若|AB|=4
6
,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案