如圖,D是Rt△ABC斜邊BC上一點(diǎn),AB=AD,記∠CAD=α,∠ABC=β.

(1)證明sinα+cos2β=0;

(2)若AC=DC,求β的值.

(1)證明:如題圖,因?yàn)棣?-∠BAD=-(π-2β)=2β-,

所以sinα=sin(2β-)=-cos2β,

即sinα+cos2β=0.

(2)解:在△ADC中,由正弦定理得,即.所以sinβ=sinα.

由(1),sinα=-cos2β,所以sinβ=-cos2β=- (1-2sin2β),

即2sin2β-sinβ-=0.

解得sinβ=或sinβ=-.

因?yàn)?<β<,所以sinβ=.從而β=.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C是直角,AC=3,BC=4,CD⊥AB于點(diǎn)D,∠A的平分線交CD于點(diǎn)M,交BC于點(diǎn)E,求:
(1)CD的長(zhǎng);
(2)AE的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,過(guò)點(diǎn)B作射線BBl∥AC.動(dòng)點(diǎn)D從點(diǎn)A出發(fā)沿射線AC方向以每秒5個(gè)單位的速度運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)E從點(diǎn)C出發(fā)沿射線AC方向以每秒3個(gè)單位的速度運(yùn)動(dòng).過(guò)點(diǎn)D作DH⊥AB于H,過(guò)點(diǎn)E作EF⊥AC交射線BB1于F,G是EF中點(diǎn),連接DG.設(shè)點(diǎn)D運(yùn)動(dòng)的時(shí)間為t秒.
(1)當(dāng)t為何值時(shí),AD=AB,并求出此時(shí)DE的長(zhǎng)度;
(2)當(dāng)△DEG與△ACB相似時(shí),求t的值;
(3)以DH所在直線為對(duì)稱軸,線段AC經(jīng)軸對(duì)稱變換后的圖形為A′C′.
①當(dāng)t>
35
時(shí),連接C′C,設(shè)四邊形ACC′A′的面積為S,求S關(guān)于t的函數(shù)關(guān)系式;
②當(dāng)線段A′C′與射線BB,有公共點(diǎn)時(shí),求t的取值范圍(寫(xiě)出答案即可).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•許昌三模)如圖,在RT△ABC中,D是斜邊AB上一點(diǎn),且AC=AD,記∠BCD=β,∠ABC=α.
(Ⅰ)求sinα-cos2β的值;
(Ⅱ)若BC=
3
CD,求∠CAB的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠ACB=90°,AC=BC=4,D是AB中點(diǎn),E是AC的中點(diǎn),現(xiàn)將△ABC沿CD翻折成直二面角A-DC-B.
(1)求異面直線AB與DE所成的角;
(2)若M,N分別為棱AC,BC上的動(dòng)點(diǎn),求△DMN周長(zhǎng)的平方的最小值;
(3)在三棱錐D-ABC的外接球面上,求A,B兩點(diǎn)間的球面距離和外接球體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案