精英家教網 > 高中數學 > 題目詳情

如圖,已知三角形所在平面互相垂直,且,,,點,分別在線段上,沿直線向上翻折,使重合.

(Ⅰ)求證:
(Ⅱ)求直線與平面所成的角的正弦值.

(Ⅰ)證明詳見解析;(Ⅱ).

解析試題分析:(Ⅰ)要證明線線垂直,由,有,從而得到線線垂直;(Ⅱ)作,垂足為,則,連接,得到直線與平面所成的角為,求得.
試題解析:

(Ⅰ)證明 又 

(Ⅱ)解:作,垂足為,則
連接
,則,設
由題意

解得
由(Ⅰ)知
直線與平面所成的角的正弦值,.
考點:線與線所成角;線面垂直.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知梯形ABCD中,AD∥BC,∠ABC =∠BAD =,AB=BC=2AD=4,E、F分別是AB、CD上的點,EF∥BC,AE=x,G是BC的中點。沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖) .

(1) 當x=2時,求證:BD⊥EG ;
(2) 若以F、B、C、D為頂點的三棱錐的體積記為f(x),求f(x)的最大值;
(3) 當f(x)取得最大值時,求二面角D-BF-C的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

將邊長為的正方形和等腰直角三角形按圖拼為新的幾何圖形,中,,連結,若,中點

(Ⅰ)求所成角的大小;
(Ⅱ)若中點,證明:平面
(Ⅲ)證明:平面平面

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在三棱柱中,側面均為正方形,∠,點是棱的中點.

(Ⅰ)求證:⊥平面;
(Ⅱ)求證:平面
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在長方體,中,,點在棱AB上移動.

(Ⅰ)證明:
(Ⅱ)求點到平面的距離;
(Ⅲ)等于何值時,二面角的大小為

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,已知三棱錐的側棱、、兩兩垂直,且,的中點.

(1)求點到面的距離;
(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在四棱錐中,底面為菱形,的中點.

(1)若,求證:平面平面;
(2)點在線段上,,若平面平面,且,求二面角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,在梯形中,,,,平面平面,四邊形是矩形,,點在線段EF上.

(1)求異面直線所成的角;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,直四棱柱ABCD-A1B1C1D1的底面ABCD為平行四邊形,其中AB=, BD=BC=1, AA1=2,E為DC的中點,F是棱DD1上的動點.

(1)求異面直線AD1與BE所成角的正切值;
(2)當DF為何值時,EF與BC1所成的角為90°?

查看答案和解析>>

同步練習冊答案