11.若實數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x+y-1≤0}\\{x-y-1≤0}\\{x≥0}\end{array}\right.$,則z=2x-y的最大值為( 。
A.-1B.1C.2D.3

分析 作出可行域,變形目標函數(shù),平移直線y=2x可得結(jié)論.

解答 解:作出約束條件$\left\{\begin{array}{l}{x+y-1≤0}\\{x-y-1≤0}\\{x≥0}\end{array}\right.$所對應的可行域(如圖△ABC),
變形目標函數(shù)可得y=2x-z,平移直線y=2x可知當直線經(jīng)過點C(1,0)時,
直線的截距最小,z取最大值,代值計算可得z=2x-y的最大值為2,
故選:C.

點評 本題考查簡單線性規(guī)劃,準確作圖是解決問題的關(guān)鍵,屬中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

1.對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)y=f(x)的導數(shù),f″(x)是f′(x)的導數(shù),若方程f″(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”.某同學經(jīng)過探究發(fā)現(xiàn),任何一個三次函數(shù)都有“拐點”和對稱中心,且“拐點”就是對稱中心.
(Ⅰ)求函數(shù)f(x)=x3-3x2+3x的對稱中心.
(Ⅱ)對于(Ⅰ)中的函數(shù)f(x),計算f(-98)+f(-97)+…+f(-1)+f(0)+f(1)+…+f(99)+f(100).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.某四面體的三視圖如圖所示,其中側(cè)視圖與俯視圖都是腰長為2的等腰直角三角形,正視圖是邊長為2的正方形,則此四面體的體積為$\frac{4}{3}$,表面積為2+2$\sqrt{3}+4\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知$\overrightarrow a=(1,1)$,$\overrightarrow b=(1,0)$,則$|{\overrightarrow a-2\overrightarrow b}|$=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設(shè)集合A={x|-1<x<3},B={x|x2+x-2>0},則A∩B=(  )
A.(2,3)B.(1,3)C.(-∞,-2)∪(1,3)D.(-∞,-2)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若等差數(shù)列{an}的前n項和為Sn,且S8-S5=6,則S13的值為26.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.將10個志愿者名額分配給4個學校,要求每校至少有一個名額,則不同的名額分配方法共有84種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設(shè)各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,且滿足2Sn2-(3n2+3n-2)Sn-3(n2+n)=0(n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{{a}_{n}}{{3}^{n+1}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.關(guān)于函數(shù)y=sin|2x|+|cos2x|下列說法正確的是(  )
A.是周期函數(shù),周期為πB.在$[{-\frac{π}{2},-\frac{π}{4}}]$上是單調(diào)遞增的
C.在$[{-\frac{π}{3},\frac{7π}{6}}]$上最大值為$\sqrt{3}$D.關(guān)于直線$x=\frac{π}{4}$對稱

查看答案和解析>>

同步練習冊答案