【題目】設(shè)為正整數(shù),集合),對(duì)于集合中的任意元素,記.

1)當(dāng)時(shí),若,,求的值;

2)當(dāng)時(shí),設(shè)的子集,且滿足:對(duì)于中的任意元素、,當(dāng)相同時(shí),是奇數(shù),當(dāng)不同時(shí),是偶數(shù),求集合中元素個(gè)數(shù)的最大值.

【答案】1,;(24.

【解析】

1)利用的定義,求得的值.(2)當(dāng)時(shí),根據(jù)、相同時(shí),是奇數(shù),求得此時(shí)集合中元素所有可能取值,然后驗(yàn)證、不同時(shí),是偶數(shù),由此確定集合中元素個(gè)數(shù)的最大值.

1)依題意

.

2)當(dāng)時(shí),依題意當(dāng)、相同時(shí),為奇數(shù),則中有“個(gè)個(gè)”或者“個(gè)個(gè).

當(dāng)、不同時(shí):

①當(dāng)中有“個(gè)個(gè)”時(shí),元素為,經(jīng)驗(yàn)證可知是偶數(shù),符合題意,集合最多有個(gè)元素.

②當(dāng)中有“個(gè)個(gè)”時(shí),元素為,經(jīng)驗(yàn)證可知是偶數(shù),符合題意,集合最多有個(gè)元素.

綜上所述,不管是①還是②,集合中元素個(gè)數(shù)的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),.

(1)討論的單調(diào)性

(2)若有兩個(gè)極值點(diǎn),,,證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題:

①函數(shù)的最小正周期是

②在直角坐標(biāo)系中,點(diǎn),將向量繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到向量,則點(diǎn)的坐標(biāo)是;

③在同一直角坐標(biāo)系中,函數(shù)的圖象和函數(shù)的圖象有兩個(gè)公共點(diǎn);

④函數(shù)上是增函數(shù).

其中,正確的命題是________(填正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓與圓關(guān)于直線對(duì)稱.

(1)求圓的標(biāo)準(zhǔn)方程;

(2)已知點(diǎn),若與直線垂直的直線與圓交于不同兩點(diǎn)、,且是鈍角,求直線軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知雙曲線C1:2x2﹣y2=1.
(1)過(guò)C1的左頂點(diǎn)引C1的一條漸近線的平行線,求該直線與另一條漸近線及x軸圍成的三角形的面積;
(2)設(shè)斜率為1的直線l交C1于P、Q兩點(diǎn),若l與圓x2+y2=1相切,求證:OP⊥OQ;
(3)設(shè)橢圓C2:4x2+y2=1,若M、N分別是C1、C2上的動(dòng)點(diǎn),且OM⊥ON,求證:O到直線MN的距離是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有一款手機(jī),每部購(gòu)買費(fèi)用是5000元,每年網(wǎng)絡(luò)費(fèi)和電話費(fèi)共需1000元;每部手機(jī)第一年不需維修,第二年維修費(fèi)用為100元,以后每一年的維修費(fèi)用均比上一年增加100.設(shè)該款手機(jī)每部使用年共需維修費(fèi)用元,總費(fèi)用.(總費(fèi)用購(gòu)買費(fèi)用網(wǎng)絡(luò)費(fèi)和電話費(fèi)維修費(fèi)用)

1)求函數(shù)、的表達(dá)式:

2)這款手機(jī)每部使用多少年時(shí),它的年平均費(fèi)用最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知數(shù)列是等比數(shù)列,且公比為,記是數(shù)列的前項(xiàng)和.

1)若1,1,求的值;

2若首項(xiàng),是正整數(shù),滿足不等式|63|62,對(duì)于任意正整數(shù)都成立,問(wèn):這樣的數(shù)列有幾個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓心為的圓過(guò)點(diǎn),且與直線相切于點(diǎn)

1)求圓的方程;

2)已知點(diǎn),且對(duì)于圓上任一點(diǎn),線段上存在異于點(diǎn)的一點(diǎn),使得為常數(shù)),試判斷使的面積等于4的點(diǎn)有幾個(gè),并說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[選修4―4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為θ為參數(shù)),直線l的參數(shù)方程為.

(1)若a=1,求Cl的交點(diǎn)坐標(biāo);

(2)若C上的點(diǎn)到l的距離的最大值為,求a.

查看答案和解析>>

同步練習(xí)冊(cè)答案