已知,,點(diǎn)M關(guān)于點(diǎn)A的對(duì)稱點(diǎn)為S,點(diǎn)S關(guān)于點(diǎn)B的對(duì)稱點(diǎn)為N,則向量、表示為                          .

 

【答案】

2

【解析】

試題分析:∵M(jìn)點(diǎn)關(guān)于A點(diǎn)的對(duì)稱點(diǎn)為S,∴A為MS的中點(diǎn),又∵S點(diǎn)關(guān)于B點(diǎn)的對(duì)稱點(diǎn)為N,∴B為SN的中點(diǎn),∴=(+),=(+),兩式相減得-=(-)=,

=2(-)=2

考點(diǎn):本題考查了向量加減混合運(yùn)算及其幾何意義,

點(diǎn)評(píng):我們根據(jù)M點(diǎn)關(guān)于A點(diǎn)的對(duì)稱點(diǎn)為S,S點(diǎn)關(guān)于B點(diǎn)的對(duì)稱點(diǎn)為N,得到=(+),=(+),是解答本題的關(guān)鍵.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心在原點(diǎn),焦點(diǎn)F在y軸的非負(fù)半軸上,點(diǎn)F到短軸端點(diǎn)的距離是4,橢圓上的點(diǎn)到焦點(diǎn)F距離的最大值是6.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程和離心率e;
(Ⅱ)若F′為焦點(diǎn)F關(guān)于直線y=
3
2
的對(duì)稱點(diǎn),動(dòng)點(diǎn)M滿足
|MF|
|MF′|
=e,問(wèn)是否存在一個(gè)定點(diǎn)M,使M到點(diǎn)A的距離為定值?若存在,求出點(diǎn)A的坐標(biāo)及此定值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:044

如圖,已知,任意點(diǎn)M關(guān)于點(diǎn)A的對(duì)稱點(diǎn)為S,點(diǎn)S關(guān)于點(diǎn)B的對(duì)稱點(diǎn)為N,用a、b表示向量

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:天利38套《2008全國(guó)各省市高考模擬試題匯編(大綱版)》、數(shù)學(xué)理 題型:044

已知直線l:y=kx+k+1,拋物線C:y2=4x,和定點(diǎn)M(1,1).

(Ⅰ)當(dāng)直線經(jīng)過(guò)拋物線焦點(diǎn)F時(shí),求點(diǎn)M關(guān)于直線l的對(duì)稱點(diǎn)N的坐標(biāo),并判斷點(diǎn)N是否在拋物線C上;

(Ⅱ)當(dāng)k變化(k≠0)且直線l與拋物線C有公共點(diǎn)時(shí),設(shè)點(diǎn)P(a,1)關(guān)于直線l的對(duì)稱點(diǎn)為Q(x0,y0),求x0關(guān)于k的函數(shù)關(guān)系式x0=f(k),并求P與M重合時(shí),x0的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年上海市虹口區(qū)高考數(shù)學(xué)一模試卷(文理合卷)(解析版) 題型:解答題

已知圓O:x2+y2=4.
(1)直線l1與圓O相交于A、B兩點(diǎn),求|AB|;
(2)如圖,設(shè)M(x1,y1)、P(x2,y2)是圓O上的兩個(gè)動(dòng)點(diǎn),點(diǎn)M關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為M1,點(diǎn)M關(guān)于x軸的對(duì)稱點(diǎn)為M2,如果直線PM1、PM2與y軸分別交于(0,m)和(0,n),問(wèn)m•n是否為定值?若是求出該定值;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案