已知定點(diǎn),F為拋物線的焦點(diǎn),動(dòng)點(diǎn)為拋物線上任意一點(diǎn),當(dāng)取最小值時(shí)P的坐標(biāo)為________.

 

【答案】

【解析】

試題分析:設(shè)點(diǎn)在準(zhǔn)線上的射影為D,則根據(jù)拋物線的定義可知,

∴要使取得最小值,即須三點(diǎn)共線時(shí)最小.

的縱坐標(biāo)代入,故的坐標(biāo)為.

考點(diǎn):拋物線的定義及其幾何性質(zhì)

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定點(diǎn)F(2,0)和定直線l:x=-2,動(dòng)圓P過(guò)定點(diǎn)F與定直線l相切,記動(dòng)圓圓心P的軌跡為曲線C.
(1)求曲線C的方程.
(2)若以M(2,3)為圓心的圓與拋物線交于A、B不同兩點(diǎn),且線段AB是此圓的直徑時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•嘉興一模)已知F為拋物線C:y2=4x焦點(diǎn),其準(zhǔn)線交x軸于點(diǎn)M,點(diǎn)N是拋物線C上一點(diǎn)
(Ⅰ)如圖1,若MN的中垂線恰好過(guò)焦點(diǎn)F,求點(diǎn)N的y軸的距離
(Ⅱ)如圖2,已知直線l交拋物線C于點(diǎn)P,Q,若在拋物線C上存在點(diǎn)R,使FPRQ為平行四邊形,試探究直線l是否過(guò)定點(diǎn)?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F為拋物線y2=3x的焦點(diǎn),P為拋物線上任一點(diǎn),A(3,2)為平面上一定點(diǎn),則|PF|+|PA|的最小值為
15
4
15
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015屆福建晉江季延中學(xué)高二上學(xué)期期中考試?yán)頂?shù)學(xué)試卷(解析版) 題型:解答題

已知定點(diǎn)F(2,0)和定直線,動(dòng)圓P過(guò)定點(diǎn)F與定直線相切,記動(dòng)圓圓心P的軌跡為曲線C

(1)求曲線C的方程.

(2)若以M(2,3)為圓心的圓與拋物線交于A、B不同兩點(diǎn),且線段AB是此圓的直徑時(shí),求直線AB的方程

 

查看答案和解析>>

同步練習(xí)冊(cè)答案