A. | $\frac{1}{3}$ | B. | $\frac{1}{4}$ | C. | 7 | D. | 不存在 |
分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義,求出最優(yōu)解,建立方程關(guān)系,即可得到結(jié)論.
解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
由z=2x+y得y=-2x+z,
平移直線y=-2x+z,
由圖象可知當(dāng)直線y=-2x+z經(jīng)過(guò)點(diǎn)C時(shí),直線的截距最小,
此時(shí)z最小,
當(dāng)直線y=-2x+z經(jīng)過(guò)點(diǎn)B時(shí),直線的截距最大,
此時(shí)z最大,
由$\left\{\begin{array}{l}{x=a}\\{y=2x}\end{array}\right.$得$\left\{\begin{array}{l}{x=a}\\{y=2a}\end{array}\right.$,即C(a,2a),此時(shí)zmin=2a+2a=4a,
由$\left\{\begin{array}{l}{y=2x}\\{x+y=3}\end{array}\right.$得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,即B(1,2),此時(shí)zmax=2+2=4,
∵z=2x+y的最大值是其最小值的3倍,
∴3×4a=4,即a=$\frac{1}{3}$,
故選:A.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合結(jié)合目標(biāo)函數(shù)的幾何意義求出最優(yōu)解是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 紅燈 | B. | 黃燈 | C. | 綠燈 | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $({-\frac{1}{2},\frac{1}{2}})$ | B. | $[{-\frac{1}{2},\frac{1}{2}}]$ | C. | $({-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}})$ | D. | $[{-\frac{{\sqrt{2}}}{2},\frac{{\sqrt{2}}}{2}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [0,2] | B. | [0,2) | C. | [0,1)∪(1,2] | D. | [0,4] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com