(2007•淄博三模)在等差數(shù)列{an}中,若S9=18,an-4=30,Sn=240.則n等于( 。
分析:由題意可得a5,進(jìn)而可得a1+an=a5+an-4=32,代入已知式子可得n
解答:解:由等差數(shù)列的性質(zhì)可得S9=
9(a1+a9)
2
=
9×2a5
2
18,
解得a5=2,故a1+an=a5+an-4=32,
故可得Sn=
n(a1+an)
2
=16n=240,解得n=15
故選B
點(diǎn)評(píng):本題考查等差數(shù)列的性質(zhì)和求和公式,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•淄博三模)已知雙曲線(xiàn)x2-
y2
a
=1(a>0)
的一條漸近線(xiàn)與直線(xiàn)x-2y+3=0垂直,則該雙曲線(xiàn)的離心率是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•淄博三模)在二項(xiàng)式(
x
+
3
x
)n
的展開(kāi)式中,各項(xiàng)系數(shù)之和為A,各項(xiàng)二項(xiàng)式系數(shù)之和為B,且A+B=72,則展開(kāi)式中常數(shù)項(xiàng)的值為
9
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•淄博三模)正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,在正方體表面上與點(diǎn)A距離是
2
3
3
的點(diǎn)形成一條曲線(xiàn),這條曲線(xiàn)的長(zhǎng)度是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•淄博三模)在△ABC中,a,b,c是內(nèi)角A,B,C的對(duì)邊,且b2=ac,cosB=
34

(1)求cotA+cotC的值;
(2)求sinA:sinB:sinC的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•淄博三模)復(fù)數(shù)z1=2+i,z2=-1+i,則
z1
z2
的共軛復(fù)數(shù)對(duì)應(yīng)點(diǎn)在( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案