【題目】已知函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|< )的圖象過點(diǎn) ,且在( , )上單調(diào),同時f(x)的圖象向左平移π個單位之后與原來的圖象重合,當(dāng) ,且x1≠x2時,f(x1)=f(x2),則f(x1+x2)=( 。
A.﹣
B.﹣1
C.1
D.

【答案】A
【解析】解:函數(shù)f(x)=2sin(ωx+φ)(ω>0,|φ|< )的圖象過點(diǎn) ,

則:2sinφ=﹣ ,

解得:sinφ=﹣ ,

由于:|φ|< ),

所以:φ=﹣

則:f(x)=2sin(ωx ).

同時f(x)的圖象向左平移π個單位之后與原來的圖象重合,

所以:

=2sin(ωx ),

則:ωπ=2kπ,

解得:ω=2k.

函數(shù)在x∈( , )上單調(diào),

則: ,

解得:0

所以:ω=2.

則:f(x)=2sin(2x ).

函數(shù)的對稱軸方程為: (k∈Z),

已知: ,且x1≠x2時,

則:當(dāng)k=﹣3時,x=﹣

由于:f(x1)=f(x2),

所以:x=

則f(x1+x2)=f(

=2sin(﹣

=

故A符合題意。
故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知PC⊥平面ABC,AC=2 ,PC=BC,AB=4,∠BAC=30°. 點(diǎn)D是線段AB上靠近B的四等分點(diǎn),PE∥CB,PC∥EB.

(Ⅰ)證明:直線AB⊥平面PCD;
(Ⅱ)若F為線段AC上靠近C的四等分點(diǎn),求平面PDF與平面CBD所成銳二面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在“新零售”模式的背景下,某大型零售公司推廣線下分店,計(jì)劃在S市的A區(qū)開設(shè)分店,為了確定在該區(qū)開設(shè)分店的個數(shù),該公司對該市已開設(shè)分店的其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記x表示在各區(qū)開設(shè)分店的個數(shù),y表示這x個分店的年收入之和.

x(個)

2

3

4

5

6

y(百萬元)

2.5

3

4

4.5

6


(1)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合y與x的關(guān)系,求y關(guān)于x的線性回歸方程 ;
(2)假設(shè)該公司在A區(qū)獲得的總年利潤z(單位:百萬元)與x,y之間的關(guān)系為z=y﹣0.05x2﹣1.4,請結(jié)合(1)中的線性回歸方程,估算該公司應(yīng)在A區(qū)開設(shè)多少個分店時,才能使A區(qū)平均每個分店的年利潤最大?
(參考公式: ,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】第五屆北京農(nóng)業(yè)嘉年華于2017年3月11日至5月7日在昌平區(qū)興壽鎮(zhèn)草莓博覽園中舉辦,設(shè)置“三館兩園一帶一谷一線”八大功能板塊.現(xiàn)安排六名志愿者去其中的“三館兩園”參加志愿者服務(wù)工作,若每個“館”與“園”都至少安排一人,則不同的安排方法種數(shù)為( 。
A.C A
B.5C A
C.5A
D.C A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐P﹣ABCD中,△PAD為正三角形,平面PAD⊥平面ABCD,E為AD的中點(diǎn),AB∥CD,AB⊥AD,CD=2AB=2AD=4.

(Ⅰ)求證:平面PCD⊥平面PAD;
(Ⅱ)求直線PB與平面PCD所成角的正弦值;
(Ⅲ)在棱CD上是否存在點(diǎn)M,使得AM⊥平面PBE?若存在,求出 的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: 的離心率為 ,左焦點(diǎn)為F(﹣1,0),過點(diǎn)D(0,2)且斜率為k的直線l交橢圓于A,B兩點(diǎn).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)在y軸上,是否存在定點(diǎn)E,使 恒為定值?若存在,求出E點(diǎn)的坐標(biāo)和這個定值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】共享單車是指企業(yè)在校園、地鐵站點(diǎn)、公交站點(diǎn)、居民區(qū)、商業(yè)區(qū)、公共服務(wù)區(qū)等提供自行車單車共享服務(wù),是共享經(jīng)濟(jì)的一種新形態(tài).一個共享單車企業(yè)在某個城市就“一天中一輛單車的平均成本(單位:元)與租用單車的數(shù)量(單位:千輛)之間的關(guān)系”進(jìn)行調(diào)查研究,在調(diào)查過程中進(jìn)行了統(tǒng)計(jì),得出相關(guān)數(shù)據(jù)見下表:

租用單車數(shù)量x(千輛)

2

3

4

5

8

每天一輛車平均成本y(元)

3.2

2.4

2

1.9

1.7

根據(jù)以上數(shù)據(jù),研究人員分別借助甲、乙兩種不同的回歸模型,得到兩個回歸方程,方程甲: (1)= +1.1,方程乙: (2)= +1.6.
(1)為了評價兩種模型的擬合效果,完成以下任務(wù):
①完成下表(計(jì)算結(jié)果精確到0.1)(備注: =yi 稱為相應(yīng)于點(diǎn)(xi , yi)的殘差(也叫隨機(jī)誤差);

租用單車數(shù)量x(千輛)

2

3

4

5

8

每天一輛車平均成本y(元)

3.2

2.4

2

1.9

1.7

模型甲

估計(jì)值 (1)

2.4

2.1

1.6

殘差 (1)

0

﹣0.1

0.1

模型乙

估計(jì)值 (2)

2.3

2

1.9

殘差 (2)

0.1

0

0

②分別計(jì)算模型甲與模型乙的殘差平方和Q1及Q2 , 并通過比較Q1 , Q2的大小,判斷哪個模型擬合效果更好.
(2)這個公司在該城市投放共享單車后,受到廣大市民的熱烈歡迎,共享單車常常供不應(yīng)求,于是該公司研究是否增加投放.根據(jù)市場調(diào)查,這個城市投放8千輛時,該公司平均一輛單車一天能收入10元,6元收入的概率分別為0.6,0.4;投放1萬輛時,該公司平均一輛單車一天能收入10元,6元的概率分別為0.4,0.6.問該公司應(yīng)該投放8千輛還是1萬輛能獲得更多利潤?(按(1)中擬合效果較好的模型計(jì)算一天中一輛單車的平均成本,利潤=收入﹣成本).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若ax2+bx+c<0的解集為{x|x<-2,或x>4},則對于函數(shù)f(x)=ax2+bx+c應(yīng)有( )
A.f(5)<f(2)<f(-1)
B.f(5)<f(-1)<f(2)
C.f(-1)<f(2)<f(5)
D.f(2)<f(-1)<f(5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=-x2-2x,g(x)=
(1)求g[f(1)]的值;
(2)若方程g[f(x)]-a=0有4個實(shí)數(shù)根,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案