已知六棱錐的底面是正六邊形,,則直線所成的角為         

解析試題分析:連接,則為所求的角,設六邊形邊長為,所以,
,所以.所以所成的角為.
考點:棱錐的結(jié)構(gòu)特征.
點評:本題考查的知識點是正六邊形的幾何特征,線面平行和線面垂直的判定,其中要判斷線面角,關(guān)鍵是作出角,屬基礎題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

如圖所示,正方形ABCD中,E、F分別是AB、AD的中點,將此正方形沿EF折成直二面角后,異面直線AF與BE所成角的余弦值為             .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

與棱長為1的正方體的一條棱平行的截面中,面積最大的截面面積為     

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知,是三條直線,,且的夾角為,那么夾角為   

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

菱形邊長為,角,沿折起,使二面角 為,則折起后、之間的距離是      

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

如圖,已知球的面上有四點,平面,,
,則球的體積與表面積的比為         

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

如圖,在正方體中,,分別是棱,的中點,則與平面所成的角的大小是      

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

在長方體ABCD-A1B1C1D1中,AB=1,AD=2.若存在各棱長均相等的四面體P1P2P3P4,其中P1,P2,P3,P4分別在棱AB,A1B1,C1D1,CD所在的直線上,則此長方體的體積為       

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

半徑為R的球放在墻角,同時與兩墻面和地面相切,那么球心到墻角頂點的距離為__    ____.

查看答案和解析>>

同步練習冊答案