【題目】已知函f(x)=sin(ωx+φ)(ω>0,|φ|<π)的部分圖象如圖所示:
(1)求ω,φ的值;
(2)設g(x)=2 f( )f( )﹣1,當x∈[0, ]時,求函數(shù)g(x)的值域.
【答案】
(1)解:由圖象知:T=4( )=π,則:ω= =2,
由f(0)=﹣1得:sinφ=﹣1,即:φ=kπ﹣ k∈Z,
∵|ω|<π∴φ=﹣ .
(2)解:由(1)知:f(x)=sin(2x﹣ )=﹣cos2x,
∴g(x)=2 f(x)f( )﹣1=2 cosx[ ]﹣1
=cos2x+sin2x= sin(2x+ ),
當x∈[0, ]時,2x+ ∈ ,則sin(2x+ )∈ ,
∴g(x)的值域為
【解析】(1)通過函數(shù)的圖象求出函數(shù)周期,求出ω,利用f(0)=﹣1求出φ,得到函數(shù)的解析式.(2)利用(1)的結果求出g(x)的表達式,當x∈[0, ]時,求出2x+ ∈ ,然后求出函數(shù)的值域.
【考點精析】通過靈活運用三角函數(shù)的最值,掌握函數(shù),當時,取得最小值為;當時,取得最大值為,則,,即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式,并寫出f(x)的單調減區(qū)間;
(2)已知△ABC的內角分別是A,B,C,A為銳角,且f( ﹣ )= ,求cosA的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=x2+ax+3.
(1)當x∈R時,f(x)≥a恒成立,求a的取值范圍.
(2)當x∈[﹣2,2]時,f(x)≥a恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的最小正周期是 ,最小值是﹣2,且圖象經過點( ,0),則f(0)= .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,a、b、c分別為內角A、B、C的對邊,且2asinA=(2b+c)sinB+(2c+b)sinC
(1)求A的大小;
(2)若sinB+sinC=1,試判斷△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓C經過點A(﹣2,0),B(0,2),且圓心C在直線y=x上,又直線l:y=kx+1與圓C相交于P、Q兩點.
(1)求圓C的方程;
(2)若,求實數(shù)k的值;
(3)過點(0,4)作動直線m交圓C于E,F(xiàn)兩點.試問:在以EF為直徑的所有圓中,是否存在這樣的圓P,使得圓P經過點M(2,0)?若存在,求出圓P的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知關于x不等式x2﹣2mx+m+2<0(m∈R)的解集為M.
(1)當M為空集時,求m的取值范圍;
(2)在(1)的條件下,求的最大值;
(3)當M不為空集,且M [1,4]時,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,求的單調區(qū)間;
(2)設是曲線圖象上的兩個相異的點,若直線的斜率恒成立,求實數(shù)的取值范圍;
(3)設函數(shù)有兩個極值點且,若恒成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com