對于以下兩個橢圓C1:9x2+y2=36,C2
x2
16
+
y2
12
=1
,正確的說法是(  )
A.C1圓,C2B.C2圓,C1
C.C1,C2一樣圓D.以上都不對
橢圓C1:9x2+y2=36,化為標準方程為:
x2
4
+
y2
36
=1

∴a12=36,b12=4,∴e1=
2
2
3

橢圓C2
x2
16
+
y2
12
=1
,∴a22=16,b22=12,∴e2=
1
2

∵e1>e2
∴C2更圓
故選B.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

已知F1、F2是橢圓的兩個焦點,滿足
MF1
MF2
的點M總在橢圓內(nèi)部,則橢圓離心率的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓a2x2+y2=a2(0<a<1)上離頂點A(0,a)最遠點為(0,-a),則a的取值范圍是( 。
A.0<a<1B.
2
2
≤a<1
C.
2
2
<a<1
D.0<a<
2
2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在橢圓
x2
a2
+
y2
b2
=1(a>b>0)
中,F(xiàn),A,B分別為其左焦點,右頂點,上頂點,O為坐標原點,M為線段OB的中點,若FMA為直角三角形,則該橢圓的離心率為( 。
A.
5
-2
B.
5
-1
2
C.
2
5
5
D.
5
5

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若焦點在y軸上的橢圓
x2
2
+
y2
m
=1
的離心率e=
1
2
,則m=______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知A1,A2為橢圓
x2
4
+y2=1的左右頂點,在長軸A1A2上隨機任取點M,過M作垂直于x軸的直線交橢圓于點P,則使∠PA1A2<45°的概率為( 。
A.
4
5
B.
7
10
C.
3
10
D.
1
5

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓
t2
5
+
y2
4
=口
的十個焦點坐標是( 。
A.(3,0)B.(0,3)C.(1,0)D.(0,1)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓C的兩個焦點分別是F1、F2,若C上存在點P滿足|PF1|=2|F1F2|,則橢圓C的離心率e的取值范圍是( 。
A.0<e≤
1
5
B.
1
3
≤e<1
C.
1
5
≤e≤
1
3
D.0<e≤
1
5
1
3
≤e<1

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知橢圓C的左、右焦點坐標分別是(-
3
,0),(
3
,0)
,離心率是
3
2
,則橢圓C的方程為(  )
A.
x2
2
+y2=1
B.
x2
4
+y2=1
C.x2+
y2
2
=1
D.x2+
y2
4
=1

查看答案和解析>>

同步練習冊答案