已知橢圓
x2
8
+
y2
4
=1上一點(diǎn)P到右焦點(diǎn)的距離是1,則點(diǎn)P到左焦點(diǎn)的距離是( 。
分析:設(shè)橢圓
x2
8
+
y2
4
=1上一點(diǎn)P到左焦點(diǎn)的距離為x,由點(diǎn)P到右焦點(diǎn)的距離是1,根據(jù)橢圓的定義知1+x=4
2
,由此能求出結(jié)果.
解答:解:設(shè)橢圓
x2
8
+
y2
4
=1上一點(diǎn)P到左焦點(diǎn)的距離為x,
∵點(diǎn)P到右焦點(diǎn)的距離是1,
∴1+x=4
2
,解得x=4
2
-1.
故選D.
點(diǎn)評(píng):本題考查橢圓的簡(jiǎn)單性質(zhì)的應(yīng)用,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的中心在原點(diǎn),離心率e=
1
2
,且它的一個(gè)焦點(diǎn)與拋物線y2=-4x的焦點(diǎn)重合,則此橢圓方程為( 。
A、
x2
4
+
y2
3
=1
B、
x2
8
+
y2
6
=1
C、
x2
2
+y2=1
D、
x2
4
+y2=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•山東)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
2
,與雙曲線x2-y2=1的漸近線有四個(gè)交點(diǎn),以這四個(gè)交點(diǎn)為頂點(diǎn)的四邊形的面積為16,則橢圓c的方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,雙曲線x2-y2=1的漸近線與橢圓C有四個(gè)交點(diǎn),以這四個(gè)交點(diǎn)為頂點(diǎn)的四邊形的面積為16,則橢圓C的方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知橢圓E:
x2
8
+
y2
4
=1
焦點(diǎn)為F1、F2,雙曲線G:x2-y2=4,設(shè)P是雙曲線G上異于頂點(diǎn)的任一點(diǎn),直線PF1、PF2與橢圓的交點(diǎn)分別為A、B和C、D.
(1)設(shè)直線PF1、PF2的斜率分別為k1和k2,求k1•k2的值;
(2)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|•|CD|恒成立?若存在,試求出λ的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓
x2
25
+
y2
16
=1
與雙曲線
x2
8
-y2=1
有公共焦點(diǎn)F1,F(xiàn)2,P為橢圓與雙曲線的一個(gè)交點(diǎn),則面積SPF1F2為( 。
A、3B、4C、5D、6

查看答案和解析>>

同步練習(xí)冊(cè)答案