【題目】已知各項(xiàng)均大于1的數(shù)列{an}滿足:a1= ,an+1= (an+ ),(n∈N*),bn=log5
(1)證明{bn}為等比數(shù)列,并求{bn}通項(xiàng)公式;
(2)若cn= ,Tn為{cn}的前n項(xiàng)和,求證:Tn<6.

【答案】
(1)證明:由an+1= (an+ ),可得:

bn+1=log5 =log5 =log52=2log5 ,

即有 = =2,

則{bn}是首項(xiàng)為b1=log5 =1,公比為2的等比數(shù)列;

且bn=b1qn1=2n1;


(2)證明:cn= = =(n+1)( n1

可得Tn=21+3 +4( 2+…+(n+1)( n1,

Tn=2 +3( 2+4( 3+…+(n+1)( n,

兩式相減可得, Tn=2+[ +( 2+( 3+…+( n1]﹣(n+1)( n

=2+ ﹣(n+1)( n=3﹣ ,

則Tn=6﹣ <6成立.


【解析】(1)運(yùn)用對(duì)數(shù)的運(yùn)算性質(zhì),結(jié)合等比數(shù)列的定義,可得 =2,即可得證,再由等比數(shù)列的通項(xiàng)公式即可得到所求;(2)求得cn= =(n+1)( n1 , 運(yùn)用數(shù)列的求和方法:錯(cuò)位相減法,結(jié)合等比數(shù)列的求和公式可得Tn , 由不等式的性質(zhì)即可得證.
【考點(diǎn)精析】本題主要考查了等比數(shù)列的通項(xiàng)公式(及其變式)和數(shù)列的前n項(xiàng)和的相關(guān)知識(shí)點(diǎn),需要掌握通項(xiàng)公式:;數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓C和y軸相切,圓心在直線x﹣3y=0上,且被直線y=x截得的弦長為 ,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在正方形SG1G2G3中,E、F分別是G1G2、G2G3的中點(diǎn),D是EF的中點(diǎn),現(xiàn)沿SE、SF及EF把這個(gè)正方形折成一個(gè)幾何體如圖(2),使G1、G2、G3三點(diǎn)重合于點(diǎn)G.證明:

(1)G在平面SEF上的射影為△SEF的垂心;
(2)求二面角G﹣SE﹣F的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ACDE所在的平面與平面ABC垂直,M是CE和AD的交點(diǎn),AC⊥BC,且AC=BC=2

(1)求證:AM⊥平面EBC
(2)(文)求三棱錐C﹣ABE的體積.
(3)(理)求二面角A﹣EB﹣C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 為拋物線上的兩個(gè)動(dòng)點(diǎn),其中,且

(1)求證:線段的垂直平分線恒過定點(diǎn),并求出點(diǎn)坐標(biāo);

(2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過雙曲線C: =1(a>0,b>0)的中心的直線交雙曲線于點(diǎn)A,B,在雙曲線C上任取與點(diǎn)A,B不重合的點(diǎn)P,記直線PA,PB,AB的斜率分別為k1 , k2 , k,若k1k2>k恒成立,則離心率e的取值范圍為(
A.1<e<
B.1<e≤
C.e>
D.e≥

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)的和為Sn , 且對(duì)任意的m,n∈N*,
都有(Sm+n+S12=4a2ma2n
(1)求 的值;
(2)求證:{an}為等比數(shù)列;
(3)已知數(shù)列{cn},{dn}滿足|cn|=|dn|=an , p(p≥3)是給定的正整數(shù),數(shù)列{cn},{dn}的前p項(xiàng)的和分別為Tp , Rp , 且Tp=Rp , 求證:對(duì)任意正整數(shù)k(1≤k≤p),ck=dk

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知長方體ABCD﹣A1B1C1D1中,E,M,N分別是BC,AE,CD1的中點(diǎn),AD=AA1=a,AB=2a.求證:MN∥平面ADD1A1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖已知拋物線的焦點(diǎn)坐標(biāo)為,過的直線交拋物線兩點(diǎn),直線分別與直線相交于兩點(diǎn)

(1)求拋物線的方程;

(2)證明△ABO與MNO的面積之比為定值

查看答案和解析>>

同步練習(xí)冊(cè)答案