已知
3
4
π<α<π,tanα+
1
tanα
=-
10
3
,求
5sin2
α
2
+8sin
α
2
cos
α
2
+11cos2
α
2
-8
2
sin(α-
π
2
)
的值.
考點:三角函數(shù)中的恒等變換應(yīng)用
專題:計算題,三角函數(shù)的求值
分析:由tanα+
1
tanα
=-
10
3
可得3tan2α+10tanα+3=0,可解得:tanα=-
1
3
或-3,由于
3
4
π<α<π,可得tanα=-
1
3
,從而化簡代入可求
5sin2
α
2
+8sin
α
2
cos
α
2
+11cos2
α
2
-8
2
sin(α-
π
2
)
的值.
解答: 解:∵tanα+
1
tanα
=-
10
3

∴3tan2α+10tanα+3=0
∴可解得:tanα=-
1
3
或-3
3
4
π<α<π,∴-1<tanα<0
∴tanα=-
1
3

5sin2
α
2
+8sin
α
2
cos
α
2
+11cos2
α
2
-8
2
sin(α-
π
2
)

=
5
2
-
5
2
cosα+4sinα+
11
2
+
11
2
cosα-8
-
2
cosα

=
4sinα+3cosα
-
2
cosα

=
4tanα+3
-
2

=-
5
2
6
點評:本題主要考察了三角函數(shù)中的恒等變換應(yīng)用,屬于基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=-
1
4
,an=1-
1
an-1
(n>1),計算并觀察數(shù)列{an}的前若干項,根據(jù)前若干項的變化規(guī)律推測,a2015=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列有關(guān)命題敘述錯誤的是(  )
A、已知集合A={1,4,2x},B={1,x2},若B⊆A,則x=0,或-2
B、若“p或q”為假命題,則p,q均為假命題
C、對于命題p:?x2>y2,x>y,則命題?p:?x2≤y2,x≤y
D、命題“若x2-3x+2=0,則x=1”的逆否命題為“若x≠1,則x2-3x+2≠0”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC的面積是1,BD=2DC,CE=3EA,AD與BE相交于點F,請寫出這4部分的面積各是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知tanα=
3
(1+m),tan(-β)=
3
•(tanαtanβ+m),α,β都是鈍角,求α+β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知2sin(3π+θ)=cos(π+θ),求2sin2θ+3sinθcosθ-cos2θ的值;
(2)化簡
sin(2π-α)•sin(π+α)•cos(-π+α)
sin(3π-α)•cos(π+α)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2sin(2x-
π
3
)的圖象可由函數(shù)y=2sin2x的圖象向
 
移動
 
個單位得到.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點 E(-2,0),F(xiàn)(2,0),曲線C上的動點M滿足
ME
MF
=-3,定點A(2,1),由曲線C外一點P(a,b)向曲線C引切線PQ,切點為Q,且 滿足|PQ|=|PA|.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)求線段|PQ|長的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和為Sn=5n2+kn-19,且a10=100,則k=
 

查看答案和解析>>

同步練習(xí)冊答案