7.已知正實數(shù)x,y滿足x+4y-xy=0,則x+y的最小值為9.

分析 變形利用基本不等式即可得出.

解答 解:∵正實數(shù)x,y滿足x+4y-xy=0,
∴x=$\frac{4y}{y-1}$=4(1+$\frac{1}{y-1}$)>0,即y>1,
∴x+y=4+$\frac{4}{y-1}$+y≥5+2$\sqrt{(y-1)•\frac{4}{y-1}}$=9,當且僅當x=6,y=3,
∴x+y的最小值為9,
故答案為:9

點評 本題考查了基本不等式的性質(zhì),屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

17.如圖,設三棱柱ABC-A1B1C1的體積為1,過四邊形ACC1A1的中心O作直線分別交棱AA1于點P,交棱CC1于點Q,則四棱錐B-APQC的體積為( 。
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.若關(guān)于x的方程lgx=5-2x的解x0∈(k,k+1),k∈Z,則k=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知f(x+1)=x+2x2,求f(x)=2x2-3x+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.給出下列結(jié)論:
①在△ABC中,sinA>sinB?a>b;
②常數(shù)數(shù)列既是等差數(shù)列又是等比數(shù)列;
③數(shù)列{an}的通項公式為${a_n}={n^2}-kn+1$,若{an}為遞增數(shù)列,則k∈(-∞,2];
④△ABC的內(nèi)角A,B,C滿足sinA:sinB:sinC=3:5:7,則△ABC為銳角三角形.其中正確結(jié)論的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.設數(shù)列{an}的前n項和為Sn,a1=1,且n•an+1=(n+2)Sn,n∈N*
(1)求證:數(shù)列$\left\{{\frac{S_n}{n}}\right\}$為等比數(shù)列;
(2)求數(shù)列{Sn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知盒中有3張分別標有1,2,3的卡片,從中隨機地抽取一張,記下數(shù)字后再放回,再隨機地抽取一張,記下數(shù)字,則兩次抽得的數(shù)字之和為3的倍數(shù)的概率為$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.函數(shù)f(x)=4$\sqrt{x+1}$-x的值域為(-∞,5].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.如圖,在正三棱柱A1B1C1-ABC中,AB=4,${A_1}A=4\sqrt{3}$,D,F(xiàn)分別是棱AB,AA1的中點,E為棱AC上的動點,則△DEF周長的最小值為$2\sqrt{7}+4$.

查看答案和解析>>

同步練習冊答案