【題目】已知函數(shù)單調(diào)遞增,其中

(1)求的值;

(2)若,當時,試比較的大小關(guān)系(其中的導(dǎo)函數(shù)),請寫出詳細的推理過程;

(3)當時, 恒成立,求的取值范圍.

【答案】(1) (2)略 (3)

【解析】試題分析:函數(shù)在某區(qū)間上單調(diào)遞增,只需函數(shù)的導(dǎo)數(shù)大于零在此區(qū)間上恒成立,利用恒成立極值原理求出滿足的條件,求出的值;第二步比較大小可以轉(zhuǎn)化為研究函數(shù)的單調(diào)性和極值問題去解決,第三步可以利用作差法構(gòu)造函數(shù),通過利用導(dǎo)數(shù)研究函數(shù)單調(diào)性和極值,達到證明不等式的目的.

試題解析:

(1)∵單調(diào)遞增,

上恒成立,即)恒成立,

∵當時,

,又,∴,

,∴

(2)由(1)可知,

,∴

,

,

,

上單調(diào)遞增,∴,

,則單調(diào)遞減,

,

,使得單調(diào)遞增,在單調(diào)遞減,

,

,

又兩個函數(shù)的最小值不同時取得,

,即

(3)∵恒成立,即恒成立,

,則

由(1)得,即),∴),

),∴,

,

時,∵,∴

單調(diào)遞減,∴,符合題意;

時, 上單調(diào)遞增,

,

單調(diào)遞增,∴符合題意,

時, ,∴上單調(diào)遞增,

,且,

存在唯一零點,

單調(diào)遞減,在單調(diào)遞增,

∴當時, ,

單調(diào)遞減,∴,不合題意.

綜上,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知不交于同一點的三條直線l1:4x+y﹣4=0,l2:mx+y=0,l3:x﹣my﹣4=0
(1)當這三條直線不能圍成三角形時,求實數(shù)m的值.
(2)當l3與l1 , l2都垂直時,求兩垂足間的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PC⊥底面ABCD,底面ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中點.
(1)求證:CE∥平面PAD;
(2)若二面角P﹣AC﹣E的余弦值為 ,求直線PA與平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形中, , , , 分別為, 的中點,

平面.

(1)求證: 平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= +log2x.
(1)求f(2),f( ),f(4),f( )的值,并計算f(2)+f( ),f(4)+f( );
(2)求f(1)+f(2)+f(3)+…+f(2016)+f( )+f( )+…f( )的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)y=f(x)圖象上不同兩點A(x1 , y1),B(x2 , y2)處的切線的斜率分別是kA , kB , 規(guī)定φ(A,B)= 叫曲線y=f(x)在點A與點B之間的“彎曲度”,給出以下命題: 1)函數(shù)y=x3﹣x2+1圖象上兩點A、B的橫坐標分別為1,2,則φ(A,B)>
2)存在這樣的函數(shù),圖象上任意兩點之間的“彎曲度”為常數(shù);
3)設(shè)點A、B是拋物線,y=x2+1上不同的兩點,則φ(A,B)≤2;
4)設(shè)曲線y=ex上不同兩點A(x1 , y1),B(x2 , y2),且x1﹣x2=1,若tφ(A,B)<1恒成立,則實數(shù)t的取值范圍是(﹣∞,1);
以上正確命題的序號為(寫出所有正確的)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)的定義域為[3,6],則函數(shù)y= 的定義域為(
A.[ ,+∞)
B.[ ,2)
C.( ,+∞)
D.[ ,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)點軸上的一個定點,其橫坐標為),已知當時,動圓過點且與直線相切,記動圓的圓心的軌跡為

(Ⅰ)求曲線的方程;

(Ⅱ)當時,若直線與曲線相切于點),且與以定點為圓心的動圓也相切,當動圓的面積最小時,證明: 兩點的橫坐標之差為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個命題:
(1)函數(shù)f(x)在x>0時是增函數(shù),x<0時也是增函數(shù),所以f(x)是增函數(shù);
(2)若m=loga2,n=logb2且m>n,則a<b;
(3)函數(shù)f(x)=x2+2(a﹣1)x+2在區(qū)間(﹣∞,4]上是減函數(shù),則實數(shù)a的取值范圍是a≤﹣3;
(4)y=log (x2+x﹣2)的減區(qū)間為(1,+∞).
其中正確的個數(shù)是( )
A.0
B.1
C.2
D.3

查看答案和解析>>

同步練習冊答案