已知函數(shù)y=f(x)同時滿足下列條件:
(1)y=f(x)是二次函數(shù);
(2)f(-2014)=f(2022);
(3)函數(shù)g(x)=f(x)+x2+4x+5是R上的單調(diào)函數(shù).
則滿足上述要求的函數(shù)f(x)可以是
 
.(寫出一個即可)
考點:二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由條件(2)可得函數(shù)對稱軸為x=4,由條件(3)可得函數(shù)的二次項系數(shù)為-1,進(jìn)而可得答案.
解答: 解:∵y=f(x)是二次函數(shù),
∴可設(shè)f(x)=ax2+bx+c,
又∵f(-2014)=f(2022),
∴函數(shù)y=f(x)的圖象關(guān)于直線x=4對稱,
-
b
2a
=4
,…①
又∵函數(shù)g(x)=f(x)+x2+4x+5是R上的單調(diào)函數(shù),
故a=-1,
∴b=8
∴f(x)=-x2+8x+c(c∈R)(填寫其中一種情況即可).
故答案為:f(x)=-x2+8x+c(c∈R)(填寫其中一種情況即可)
點評:本題考查的知識點是二次函數(shù)的性質(zhì),其中根據(jù)已知分析出函數(shù)的對稱軸,二次項系數(shù)是解答的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的偶函數(shù),它在[0,+∞)上是減函數(shù).則下列各式一定成立的是(  )
A、f(0)<f(6)
B、f(-3)>f(2)
C、f(-1)>f(3)
D、f(-2)<f(-3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某旅行社為調(diào)查市民喜歡“人文景觀”景點是否與年齡有關(guān),隨機(jī)抽取了55名市民,得到數(shù)據(jù)如下表:
喜歡 不喜歡 合計
大于40歲 20 5 25
20歲至40歲 10 20 30
合計 30 25 55
(Ⅰ)判斷是否有99.5%的把握認(rèn)為喜歡“人文景觀”景點與年齡有關(guān)?
(Ⅱ)用分層抽樣的方法從喜歡“人文景觀”景點的市民中隨機(jī)抽取6人作進(jìn)一步調(diào)查,將這6位市民作為一個樣本,從中任選2人,求恰有1位“大于40歲”的市民和1位“20歲至40歲”的市民的概率.
下面的臨界值表供參考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=ax2+(2b+1)x-a(a,b∈R,a≠0)
(1)當(dāng)a=b時,f(x)在[
a
2
,a]上有最小值
3a
4
,求實數(shù)a的值;
(2)若f(x)-2在區(qū)間[1,2]上至少有一個零點,求a2+b2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,直線y=-2x+a與圓x2+y2=9交于A、B兩點.
(1)求證:若a=2
6
,則
OA
OB
=
3
5
是真命題;
(2)寫出(1)中的逆命題,并判斷其真假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程x2-2x-m=0在-1≤x≤1上有解,則實數(shù)m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

向面積為S的△ABC內(nèi)任投一點P,則隨機(jī)事件“△PBC的面積小于
S
3
”的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x),在[2,+∞)單調(diào)遞增,對任意實數(shù)x恒有f(2+x)=f(2-x)成立,若f(x)<f(x+2),則x的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體的棱長為1,線段B′D′上有兩個動點E,F(xiàn),EF=
1
2
,則下列結(jié)論中錯誤的是( 。
A、AC⊥BE
B、EF∥平面ABCD
C、三棱錐A-BEF的體積為定值
D、異面直線AE,BF所成角為定值

查看答案和解析>>

同步練習(xí)冊答案