【題目】設(shè)點(diǎn)P是直線上一點(diǎn),過(guò)點(diǎn)P分別作拋物線的兩條切線PA、PB,其中A、 B為切點(diǎn).

1)若點(diǎn)A的坐標(biāo)為,求點(diǎn)P的橫坐標(biāo);

2)直線AB是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),說(shuō)明理由.

【答案】1 2)直線AB過(guò)定點(diǎn),定點(diǎn)為,理由見(jiàn)解析.

【解析】

1)求出切線的方程后,將的縱坐標(biāo)代入可求得橫坐標(biāo);
(2)設(shè),求出過(guò)兩點(diǎn)的拋物線的切線方程,將點(diǎn)坐標(biāo)分別代入切線方程進(jìn)行比較分析,可得直線直線AB是過(guò)定點(diǎn),得出答案.

(1) 拋物線化為,則.

,則過(guò)點(diǎn)的拋物線的切線的斜率為:.

所以直線的方程為:即:.

當(dāng)時(shí),,所以.

點(diǎn)P的橫坐標(biāo)為

(2) 直線AB是過(guò)定點(diǎn).

由題意設(shè)

由(1)可知,

則切線的方程為:,即

所以切線的方程為:

切線的方程為:

又切線PAPB交于點(diǎn),設(shè)

則有,說(shuō)明點(diǎn)滿(mǎn)足方程.

即點(diǎn)在直線.

,說(shuō)明點(diǎn)滿(mǎn)足方程.

即點(diǎn)在直線.

所以兩點(diǎn)都在直線上,

則直線的方程為:

又直線過(guò)定點(diǎn).

所以直線AB過(guò)定點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的左焦點(diǎn)為,是橢圓上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)的坐標(biāo)為時(shí),的周長(zhǎng)恰為

(1)求橢圓的方程;

(2)過(guò)點(diǎn)作直線交橢圓于兩點(diǎn),且 ,求面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面平面,四邊形都是邊長(zhǎng)為2的正方形,點(diǎn)分別是,的中點(diǎn),二面角的大小為60°.

1)求證:平面

2)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】以原點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為,a為常數(shù))),過(guò)點(diǎn)、傾斜角為的直線的參數(shù)方程滿(mǎn)足,(為參數(shù)).

(1)求曲線C的普通方程和直線的參數(shù)方程;

(2)若直線與曲線C相交于A、B兩點(diǎn)(點(diǎn)P在A、B之間),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

2)對(duì)任意的,,,恒有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,底面是平行四邊形,平面,,,的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)若,求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,,直線的斜率為,直線的斜率為,且.

(1)求點(diǎn)的軌跡的方程;

(2)設(shè),,連接并延長(zhǎng),與軌跡交于另一點(diǎn),點(diǎn)中點(diǎn),是坐標(biāo)原點(diǎn),的面積之和為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)討論函數(shù)的極值;

(2)若為整數(shù),,,不等式成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)=lnx+ax2+(2a+1)x

(1)討論的單調(diào)性;

(2)當(dāng)a﹤0時(shí),證明

查看答案和解析>>

同步練習(xí)冊(cè)答案