已知函數(shù)f(x)=
|x-1|-2(|x|≤1)
1
1+x2
(|x|>1)

(1)求函數(shù)f(x)的定義域;
(2)求f[f(
1
2
)]的值;
(3)若f(x)=
1
3
,求相應(yīng)的x的值.
考點(diǎn):分段函數(shù)的應(yīng)用,函數(shù)的定義域及其求法,函數(shù)的值
專題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:(1)考慮各段的范圍,再求并集即可得到定義域;
(2)先運(yùn)用第一段的解析式,再由第二段解析式計(jì)算即可得到;
(3)討論各段解析式,解方程注意檢驗(yàn),即可得到所求值.
解答: 解:(1)由|x|≤1可得-1≤x≤1,
|x|>1可得x>1或x<-1,
可得定義域?yàn)镽;
(2)f(
1
2
)=|
1
2
-1|-2=
1
2
-2
=-
3
2
,
則f[f(
1
2
)]=f(-
3
2
)=
1
1+
9
4
=
4
13

(3)若-1≤x≤1,則f(x)=
1
3
即為|x-1|-2=
1
3
,
解得x=
10
3
或-
4
3
,不成立,都舍去;
若x>1或x<-1,則f(x)=
1
3
即為
1
1+x2
=
1
3
,解得x=±
2
,成立.
則所求x=±
2
點(diǎn)評(píng):本題考查分段函數(shù)的運(yùn)用,考查分段函數(shù)的定義域,注意求并集,考查分段函數(shù)值以及自變量的值,注意考慮各段的情況,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若A={0,1,2,3},B={1,2,4,5},則集合A∩B的子集的個(gè)數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列解析式中不是數(shù)列1,-1,1,-1,1,…的通項(xiàng)公式的是( 。
A、an=(-1)n
B、an=(-1)n+1
C、an=(-1)n-1
D、an=
1,n為奇數(shù)
-1,n為偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算下列各式:
(1)
3a
9
2
a-3
÷
3a-7
3a
13
3
;
(2)(2
3
5
)0+2-2•(2
1
4
)-
1
2
-(0.01)0.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=-
3
sinx+3cosx.若x1•x2>0,且f(x1)+f(x2)=0,則|x1+x2|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(cos15°-cos75°)(sin75°+sin15°)=( 。
A、
1
2
B、
2
2
C、
3
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

二次函數(shù)y=ax2+bx+c與x軸的兩個(gè)交點(diǎn)為(-2,0)(2,0)則不等式ax2+bx+c>0的解集為( 。
A、(-2,2)
B、(-∞,-2)∪(2,+∞)
C、{x|x≠±2}
D、與a符號(hào)有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線中心在原點(diǎn),且一個(gè)焦點(diǎn)為(
7
,0),直線y=x-1與其相交于M,N兩點(diǎn),MN的中點(diǎn)的橫坐標(biāo)為-
2
3
,求此雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x+sinx,對(duì)任意的m∈[-2,2],f(mx-3)+f(x)<0恒成立,則x的取值范圍
 

查看答案和解析>>

同步練習(xí)冊(cè)答案