(本小題滿分14分)

(本題14分).如圖所示,在正三棱柱ABC-A1B1C1中,
底面邊長和側(cè)棱長都是2,D是側(cè)棱CC1上任意一點(diǎn),E是
A1B1的中點(diǎn).
(1)求證:A1B1//平面ABD.
(2)求證:
(3)求三棱錐C-ABE的體積.
(Ⅰ)見解析  (Ⅱ) 見解析(Ⅲ)
(1)證明:在正三棱柱ABC-A1B1C1中,∵A1B1//AB,
AB在平面ABD內(nèi),A1B1不在平面ABD內(nèi),
∴A1B1//平面ABD.………………………………………5分
(2) 證明:取AB中點(diǎn)F,連接EF,CF,
則CF^AB,EF^AB……………………8分
……………………9分
…………10分
(3)解:  14分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
(注意:在試題卷上作答無效)
四棱錐中,底面為矩形,側(cè)面底面,,
(Ⅰ)證明:;
(Ⅱ)設(shè)側(cè)面為等邊三角形,求二面角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在直角梯形ABCP中,AB=BC=3,AP=7,CD⊥AP,現(xiàn)將沿折線CD折成60°的二面角P—CD—A,設(shè)E,F(xiàn),G分別是PD,PC,BC的中點(diǎn)。
(I)求證:PA//平面EFG;
(II)若M為線段CD上的一個動點(diǎn),問當(dāng)M在什么位置時,MF與平面EFG所成角最大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)如圖甲,直角梯形中,,,點(diǎn)、分別在,上,且,,,,現(xiàn)將梯形沿折起,使平面與平面垂直(如圖乙).

(Ⅰ)求證:平面;
(Ⅱ)當(dāng)的長為何值時,
二面角的大小為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
某高速公路收費(fèi)站入口處的安全標(biāo)識墩如圖4所示,墩的上半部分是正四棱錐P-EFGH,下半部分是長方體ABCD-EFGH.圖5、圖6分別是該標(biāo)識墩的正(主)視圖和俯視圖.
(1)請畫出該安全標(biāo)識墩的側(cè)(左)視圖;
(2)求該安全標(biāo)識墩的體積
(3)證明:直線BD平面PEG

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知:正方體,為棱
的中點(diǎn).
(1)求證:
(2)求三棱錐的體積;
(3)求證:平面. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是兩條不同的直線,是兩個不同的平面,有下列命題:
①若,則;       ②若,,則;
③若,則;       ④若,則;
其中真命題的個數(shù)是
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在正方體
,求所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐P—ABCD中,底面四邊形ABCD是正方形,側(cè)面PDC是邊長為a的正
三角形,且平面PDC⊥底面ABCD,E為PC的中點(diǎn)。


 
        (I)求異面直線PA與DE所成的角;

        (II)求點(diǎn)D到面PAB的距離.

查看答案和解析>>

同步練習(xí)冊答案