15.函數(shù)y=lg(x+$\sqrt{1+{x}^{2}}$)是( 。
A.偶函數(shù)B.奇函數(shù)C.非奇非偶函數(shù)D.以上都不對

分析 利用奇函數(shù)的定義,即可得出結(jié)論.

解答 解:函數(shù)y=lg(x+$\sqrt{1+{x}^{2}}$)定義域是R.
令f(x)=lg(x+$\sqrt{1+{x}^{2}}$),則f(x)+f(-x)=lg(x+$\sqrt{1+{x}^{2}}$)+lg(-x+$\sqrt{1+{x}^{2}}$)=0,
∴f(-x)=-f(x),
∴函數(shù)y=lg(x+$\sqrt{1+{x}^{2}}$)是奇函數(shù),
故選:B.

點(diǎn)評 本題考查函數(shù)的奇偶性的判定,考查奇函數(shù)的定義,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若實數(shù)x,y滿足$\left\{\begin{array}{l}{x+2y-4≤0}\\{x≥0}\\{y≥0}\end{array}\right.$,則z=$\frac{y+2}{x+1}$的取值范圍為( 。
A.(-∞,$\frac{2}{5}$]∪[4,+∞)B.[$\frac{2}{5}$,4]C.[2,4]D.(-∞,-2]∪[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x2+(1-a)x+(1-a).a(chǎn)∈R.
(1)當(dāng)a=4時,解不等式f(x)≥7;
(2)若對P任意的x∈(-1,+∞),函數(shù)f(x)的圖象恒在x軸上方,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知數(shù)列{an}的通項公式為an=2n(3n-13),則數(shù)列{an}的前n項和Sn取最小值時,n的值是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知m,n為正數(shù)且有2m+n=1,則$\frac{1}{m}$+$\frac{2}{n}$的最小值為.(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.下列函數(shù)中,在區(qū)間(0,+∞)內(nèi)單調(diào)遞減的是(  )
A.y=x2B.y=$\frac{1}{x}$C.y=xD.y=$\sqrt{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.己知函數(shù)f(x)=a(x-$\frac{1}{x}$)-2lnx,其中a∈R.
(1)若f(x)有極值,求a的取值范圍;
(2)若f(x)有三個不同的零點(diǎn)x1,x2,x3,求證:$①f(\frac{a^2}{4})<0;②{x_1}+{x_2}+{x_3}$>3
(參考數(shù)值:ln2≈0.6931)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.己知平面向量$\overrightarrow{a}$=(1,x),$\overrightarrow$=(2,y),且$\overrightarrow{a}$⊥$\overrightarrow$,則|$\overrightarrow{a}$+$\overrightarrow$|的最小值為(  )
A.1B.$\sqrt{5}$C.$\sqrt{7}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=x3-9x+5.
(1)求曲線y=f(x)在點(diǎn)(2,f(2))處的切線與坐標(biāo)軸圍成三角形的面積;
(2)求f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

同步練習(xí)冊答案