19.作出函數(shù)y═-$\frac{1}{x+1}$的圖象.

分析 根據(jù)函數(shù)圖象的變換即可得到函數(shù)的圖象.

解答 解:函數(shù)y═-$\frac{1}{x+1}$的圖象是由y=-$\frac{1}{x}$向左平移一個(gè)單位得到的.

點(diǎn)評 本題考查的知識點(diǎn)是函數(shù)的圖象,熟練掌握各種基本初等函數(shù)的圖象和性質(zhì),及函數(shù)圖象的變換法則,是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知命題p:?x∈(-$\frac{π}{2}$,0),sinx>x;命題q:lg(1-x)<1的解集為(0,1),則下列命題為真命題的是(  )
A.p∧qB.p∧(¬q)C.(¬p)∨qD.(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}3+{log_2}(x-1),x>0\\{x^2}-x-1,x≤0\end{array}$,若f(a)=5,則a的取值集合為(  )
A.{-2,3,5}B.{-2,3}C.{-2,5}D.{3,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.拋物線y2=2px(p>0)的焦點(diǎn)為F,直線y=4與拋物線和y軸分別交于點(diǎn)P、Q,且|PF|=2|PQ|
(1)求拋物線的方程;
(2)過點(diǎn)F作互相垂直的兩直線分別交拋物線于點(diǎn)A、B、C、D,求四邊形ACBD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.歐拉公式eix=cosx+isinx(i為虛數(shù)單位)是由瑞士著名數(shù)學(xué)家歐拉發(fā)明的,它將指數(shù)函數(shù)的定義域擴(kuò)大到復(fù)數(shù),建立了三角函數(shù)和指數(shù)函數(shù)的關(guān)系,它在復(fù)變函數(shù)論里占用非常重要的地位,被譽(yù)為“數(shù)學(xué)中的天橋”,根據(jù)歐拉公式:
(1)判斷e2i表示的復(fù)數(shù)在復(fù)平面中位于第幾象限,并說明理由?
(2)若eix<0,求cosx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=x3-ax2,其中x∈R,a為參數(shù)
(1)記函數(shù)g(x)=$\frac{1}{6}$f′(x)+lnx,討論函數(shù)g(x)的單調(diào)性;
(2)若曲線y=f(x)與x軸正半軸有交點(diǎn)且交點(diǎn)為P,曲線在點(diǎn)P處的切線方程為y=g(x),求證:對于任意的正實(shí)數(shù)x,都有f(x)≥g(x).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)$f(x)={x^3}+a{x^2}+bx在x=-\frac{2}{3}與x=1$處都取得極值.
(1)求a,b的值;   
(2)求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.幾何體三視圖如圖所示,則該幾何體的體積為(  )
A.$\frac{32}{3}$B.$16-\frac{2π}{3}$C.$\frac{40}{3}$D.$16-\frac{8π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實(shí)線畫出的是某多面體的三視圖,則該多面體的體積為$\frac{32}{3}$.

查看答案和解析>>

同步練習(xí)冊答案