已知橢圓Γ:=1(a>b>0)的離心率為,半焦距為c(c>0),且a-c=1.經過橢圓的左焦點F,斜率為k1(k1≠0)的直線與橢圓交于A,B兩點,O為坐標原點.

(Ⅰ)求橢圓Γ的標準方程;

(Ⅱ)當k1=1時,求S△AOB的值;

(Ⅲ)設R(1,0),延長AR,BR分別與橢圓交于C,D兩點,直線CD的斜率為k2,求證:為定值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C=1(a>b>0)的離心率為,過右焦點F且斜率為1的直線交橢圓CA,B兩點,N為弦AB的中點。

(1)求直線ONO為坐標原點)的斜率KON ;

(2)對于橢圓C上任意一點M ,試證:總存在角∈R)使等式:cossin成立。w.w.w.k.s.5.u.c.o.m

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年江蘇南京金陵中學高三第一學期期中考試理科數(shù)學試卷(解析版) 題型:解答題

已知橢圓C:=1(a>b>0)的離心率e=,橢圓C的上、下頂點分別為A1,A2,左、右頂點分別為B1,B2,左、右焦點分別為F1,F(xiàn)2.原點到直線A2B2的距離為

(1)求橢圓C的方程;

(2)過原點且斜率為的直線l,與橢圓交于E,F(xiàn)點,試判斷∠EF2F是銳角、直角還是鈍角,并寫出理由;

(3)P是橢圓上異于A1,A2的任一點,直線PA1,PA2,分別交軸于點N,M,若直線OT與過點M,N 的圓G相切,切點為T.證明:線段OT的長為定值,并求出該定值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆湖北省武漢市高三9月調研測試理科數(shù)學試卷(解析版) 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,過右焦點F的直線l與C相交于A、B兩點,當l的斜率為1時,坐標原點O到l的距離為

(Ⅰ)求a,b的值;

(Ⅱ)C上是否存在點P,使得當l繞F轉到某一位置時,有成立?若存在,求出所有的P的坐標與l的方程;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆江西省高三年級聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題

已知橢圓C:=1(a>b>0)的焦距為4,且與橢圓x2=1有相同的離心率,斜率為k的直線l經過點M(0,1),與橢圓C交于不同的兩點A、B.

(1)求橢圓C的標準方程;

(2)當橢圓C的右焦點F在以AB為直徑的圓內時,求k的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆福建省、二中高二上學期期末聯(lián)考文科數(shù)學卷(解析版) 題型:解答題

已知橢圓C=1(a>b>0)的一個焦點是F(1,0),且離心率為.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設經過點F的直線交橢圓CM,N兩點,線段MN的垂直平分線交y軸于點P(0,y0),求y0的取值范圍.

 

查看答案和解析>>

同步練習冊答案