【題目】如圖四棱錐 中,四邊形 為平行四邊形, 為等邊三角形,AABE是以 為直角的等腰直角三角形,且 .

(1)證明: 平面 平面BCE;
(2)求二面角 的余弦值.

【答案】
(1)解:設(shè)O為BE的中點(diǎn),連接AO與CO,因?yàn)锳BCE為等邊三角形,AABE是以 為直角的等腰直角三角形,則 .故由二面角的平面角的定義可知 是二面角 的平面角,設(shè) ,則 ,在 中,因?yàn)? ,所以 ,即 ,也即二面角 的平面角為 ,故由面面垂直的定義可知平面 平面BCE.


(2)解:由(1)可知 兩兩互相垂直,設(shè)OE的方向?yàn)閤軸正方向,OE為單位長(zhǎng),以O(shè)為坐標(biāo)原點(diǎn),建立如圖所示空間直角坐標(biāo)系 .則

,所以

.設(shè) 是平面 的法向量,則 ,即 ,所以可取 ,設(shè) 是平面 的法向量,則 ,同理可取 ,則 ,所以二面角 的余弦值為 .


【解析】(1)根據(jù)題意作出輔助線(xiàn),即可證明 A O ⊥ B E , C O ⊥ B E ,從而找出 ∠ A O C 是二面角 A B E C 的平面角,在 Δ A O C 中借助邊的關(guān)系以及勾股定理可得證 ∠ A O C = 900,即二面角 A B E C 的平面角為 900,故由面面垂直的定義可知平面 A B E ⊥ 平面BCE.(2)由已知根據(jù)題意建立空間直角坐標(biāo)系,求出各個(gè)點(diǎn)的坐標(biāo)進(jìn)而求出各個(gè)向量的坐標(biāo),設(shè)出平面ADE和平面DEC的法向量,由向量垂直的坐標(biāo)運(yùn)算公式可求出法向量,再利用向量的數(shù)量積運(yùn)算公式求出余弦值即可。

【考點(diǎn)精析】本題主要考查了平面與平面垂直的判定和空間向量的數(shù)量積運(yùn)算的相關(guān)知識(shí)點(diǎn),需要掌握一個(gè)平面過(guò)另一個(gè)平面的垂線(xiàn),則這兩個(gè)平面垂直;等于的長(zhǎng)度的方向上的投影的乘積才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)是奇函數(shù).

(1)求的值;

(2)判斷函數(shù)的單調(diào)性并證明;

(2)若關(guān)于的不等式有解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,|AB|=4,|AD|=2,O為AB中點(diǎn),P,Q分別是AD和CD上的點(diǎn),且滿(mǎn)足① = ,②直線(xiàn)AQ與BP的交點(diǎn)在橢圓E: + =1(a>b>0)上.

(Ⅰ)求橢圓E的方程;
(Ⅱ)設(shè)R為橢圓E的右頂點(diǎn),M為橢圓E第一象限部分上一點(diǎn),作MN垂直于y軸,垂足為N,求梯形ORMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖動(dòng)直線(xiàn) 與拋物線(xiàn) 交于點(diǎn) ,與橢圓 交于拋物線(xiàn)右側(cè)的點(diǎn) 為拋物線(xiàn)的焦點(diǎn),則 的最大值為( )

A.
B.
C.2
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若定義域?yàn)镽的奇函數(shù)f(x)滿(mǎn)足f(1+x)=﹣f(x),則下列結(jié)論: ①f(x)的圖象關(guān)于點(diǎn) 對(duì)稱(chēng);
②f(x)的圖象關(guān)于直線(xiàn) 對(duì)稱(chēng);
③f(x)是周期函數(shù),且2個(gè)它的一個(gè)周期;
④f(x)在區(qū)間(﹣1,1)上是單調(diào)函數(shù).
其中正確結(jié)論的序號(hào)是 . (填上你認(rèn)為所有正確結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的圖像是由函數(shù)的圖像經(jīng)如下變換得到:先將圖像上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來(lái)的2倍橫坐標(biāo)不變,再將所得到的圖像向右平移個(gè)單位長(zhǎng)度.

求函數(shù)的解析式,并求其圖像的對(duì)稱(chēng)軸方程;

已知關(guān)于的方程內(nèi)有兩個(gè)不同的解

1求實(shí)數(shù)m的取值范圍;

2證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在銳角△ABC中,a,b,c為角A,B,C所對(duì)的邊,且(b﹣2c)cosA=a﹣2acos2
(1)求角A的值;
(2)若a= ,則求b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)容量為M的樣本數(shù)據(jù),其頻率分布表如下

(1)計(jì)算a,b的值;

(2)畫(huà)出頻率分布直方圖;

(3)用頻率分布直方圖,求出總體的眾數(shù)及平均數(shù)的估計(jì)值.

頻率分布表

分組

頻數(shù)

頻率

頻率/組距

(10,20]

2

0.10

0.010

(20,30]

3

0.15

0.015

(30,40]

4

0.20

0.020

(40,50]

a

b

0.025

(50,60]

4

0.20

0.020

(60, 70]

2

0.10

0.010

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)A是單位圓O和x軸正半軸的交點(diǎn),P,Q是圓O上兩點(diǎn),O為坐標(biāo)原點(diǎn),∠AOP= ,∠AOQ=α,α∈[0, ].

(1)若Q( , ),求cos(α﹣ )的值;
(2)設(shè)函數(shù)f(α)=sinα( ),求f(α)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案