|
|
已知函數(shù) y=cosx與y=sin(2x+φ)(0≤φ≤0),它們的圖象有一個橫坐標為的交點,則φ的值是________.
|
|
|
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:蘇教版(新課標) 必修1
題型:
|
|
設(shè)函數(shù)f(x)的定義域為R,若存在常數(shù)M>0,使|f(x)|≤M|x|對一切實數(shù)x均成立,則稱f(x)為“倍約束函數(shù)”.現(xiàn)給出下列函數(shù):①f(x)=2x;②f(x)=x2+1;
③f(x)=sinx+cosx;④f(x)=;⑤f(x)是定義在實數(shù)集R上的奇函數(shù),且對一切x1,x2均有|f(x1)-f(x2)|≤|x1+x2|.其中是“倍約束函數(shù)”的有________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標綜合版 專題復(fù)習(xí)
題型:
|
|
如圖,已知兩條拋物線E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),過原點O的兩條直線l1和l2,l1與E1,E2分別交于A1,A2兩點,l2與E1,E2分別交于B1,B2兩點.
(1)證明:A1B1∥A2B2;
(2)過原點O作直線(異于l1,l2)與E1,E2分別交于C1,C2兩點.記?A1B1C1與的△A2B2C2面積分別為S1與S2,求的值.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標綜合版 專題復(fù)習(xí)
題型:
|
|
設(shè)x,y滿足約束條件,則z=x+4y的最大值為________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標綜合版 專題復(fù)習(xí)
題型:
|
|
已知拋物線C:y2=2px(p>0)的焦點為F,直線y=4與y軸的交點為P,與C的交點為Q,且.
(1)求拋物線C的方程;
(2)過F的直線l與C相交于A,B兩點,若AB的垂直平分線與C相交于M,N兩點,且A,M,B,N四點在同一個圓上,求直線l的方程.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標綜合版 專題復(fù)習(xí)
題型:
|
|
已知函數(shù) f(x)=x2+mx-1,若對于任意x∈[m,m+1],都有f(x)<0成立,則實數(shù)m的取值范圍是________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標綜合版 專題復(fù)習(xí)
題型:
|
|
如圖,在平面直角坐標系 xOy中,F1、F2分別是橢圓的左、右焦點,頂點B的坐標為(0,b),連結(jié)BF2交橢圓于點A,過點A作x軸的垂線交橢圓于另一點C,連結(jié)F1C.
(1) 若點C的坐標為(,),且BF2=,求橢圓的方程;
(2) 若F1C⊥AB,求橢圓離心率e的值.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標綜合版 專題復(fù)習(xí)
題型:
|
|
平面上以機器人在行進中始終保持與點F(1,0)的距離和到直線x=-1的距離相等.若機器人接觸不到過點P(-1,0)且斜率為k的直線,則k的取值范圍是________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標綜合版 專題復(fù)習(xí)
題型:
查看答案和解析>>