【題目】設(shè)點是拋物線上的動點,的準線上的動點,直線且與為坐標原點)垂直,則點的距離的最小值的取值范圍是( )

A. B. C. D.

【答案】B

【解析】

設(shè)出點坐標,表示出直線,將點到直線的距離轉(zhuǎn)化成,與直線平行且與拋物線相切的直線與直線間的距離.再找到其取值范圍.

拋物線的準線方程是

若點的坐標為,此時直線的方程為,

顯然點到直線的距離的最小值是1

若點的坐標為,其中

則直線的斜率為

直線的斜率為

直線的方程為

,

設(shè)與直線平行且與拋物線相切的直線方程為

代入拋物線方程得

所以

解得

所以與直線平行且與拋物線相切的直線方程為

所以點到直線的距離的最小值為直線與直線的距離,即

因為

所以

綜合兩種情況可知點到直線的距離的最小值的取值范圍是

所以選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{an}滿足a1+a418,a2+a536

1)求數(shù)列{an}的通項公式an

2)若數(shù)列{bn}滿足bnan+log2an,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)的環(huán)保社團參照國家環(huán)境標準制定了該校所在區(qū)域空氣質(zhì)量指數(shù)與空氣質(zhì)量等級對應(yīng)關(guān)系如下表(假設(shè)該區(qū)域空氣質(zhì)量指數(shù)不會超過300):

空氣質(zhì)量指數(shù)

空氣質(zhì)量等級

1級優(yōu)

2級良

3級輕度污染

4級中度污染

5級重度污染

6級嚴重污染

該社團將該校區(qū)在2018年11月中10天的空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)作為樣本,繪制的頻率分布直方圖如下圖,把該直方圖所得頻率估計為概率.

(Ⅰ)以這10天的空氣質(zhì)量指數(shù)監(jiān)測數(shù)據(jù)作為估計2018年11月的空氣質(zhì)量情況,則2018年11月中有多少天的空氣質(zhì)量達到優(yōu)良?

(Ⅱ)已知空氣質(zhì)量等級為1級時不需要凈化空氣,空氣質(zhì)量等級為2級時每天需凈化空氣的費用為1000元,空氣質(zhì)量等量等級為3級時每天需凈化空氣的費用為2000元.若從這10天樣本中空氣質(zhì)量為1級、2級、3級的天數(shù)中任意抽取兩天,求這兩天的凈化空氣總費用為3000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種產(chǎn)品的廣告費用支出(百萬)與銷售額(百萬)之間有如下的對應(yīng)數(shù)據(jù):


2

4

5

6

8


30

40

60

50

70

(1)畫出散點圖;

(2)求回歸直線方程;

(3)據(jù)此估計廣告費用為10(百萬),銷售收入的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】地球海洋面積遠遠大于陸地面積,隨著社會的發(fā)展,科技的進步,人類發(fā)現(xiàn)海洋不僅擁有巨大的經(jīng)濟利益,還擁有著深遠的政治利益.聯(lián)合國于第63屆聯(lián)合國大會上將每年的6月8日確定為“世界海洋日”.2019年6月8日,某大學(xué)的行政主管部門從該大學(xué)隨機抽取100名大學(xué)生進行一次海洋知識測試,并按測試成績(單位:分)分組如下:第一組,第二組,第二組,第四組,第五組,得到頻率分布直方圖如下圖:

(1)求實數(shù)的值;

(2)若從第二組、第五組的學(xué)生中按組用分層抽樣的方法抽取9名學(xué)生組成中國海洋實地考察小隊,出發(fā)前,用簡單隨機抽樣方法從9人中抽取2人作為正、副隊長,求“抽取的2人為不同組”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex(x﹣a)2+4.

(1)若f(x)在(﹣∞,+∞)上單調(diào)遞增,求a的取值范圍;

(2)若x≥0,不等式f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,我國某海岸線可看作由圓弧AB和射線BC連接而成,其中圓弧AB所在圓O的半徑為12海里,圓心角為120°,規(guī)定外輪除特許外,不得進入離我國海岸線12海里以內(nèi)的區(qū)域.在港口A處設(shè)有觀察站,外輪一旦進入規(guī)定區(qū)域,觀察站會接收到預(yù)警信號,現(xiàn)從A處測得一外輪在北偏東60°,距離港口x海里的P處,沿直線PA方向航行.

1)當x30時,分別求出外輪到海岸線BC和弧AB的最短距離,并判斷觀察站是否接收到預(yù)警信號?

2)當x為何值時,觀察站開始接收到預(yù)警信號?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a、b、cABC的三個內(nèi)角AB、C的對邊,向量=-1,),=cosA,sinA),若,且acosB+bcosA=csinC,則角B的大小為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右兩個焦點分別為,P是橢圓上位于第一象限內(nèi)的點,軸,垂足為Q,,,的面積為.

1)求橢圓F的方程:

2)若M是橢圓上的動點,求的最大值,并求出取得最大值時M的坐標.

查看答案和解析>>

同步練習(xí)冊答案