已知過點M(1,0)的直線交橢圓C:x2+3y2=6于A,B兩點.
(1)求弦AB中點的軌跡方程;
(2)若F為橢圓C的左焦點,求△ABF面積的最大值.
考點:軌跡方程
專題:綜合題,直線與圓,圓錐曲線的定義、性質(zhì)與方程
分析:(1)利用點差法,可求弦AB中點的軌跡方程;
(2)設(shè)直線AB方程為x=my+1,代入x2+3y2=6中,利用韋達定理,求出△ABF面積,換元,再求△ABF面積的最大值.
解答: 解:(1)設(shè)A(x1,y1),B(x2,y2),弦AB中點(x,y),則
∵過點M(1,0)的直線交橢圓C:x2+3y2=6于A,B兩點,
∴x12+3y12=6,x22+3y22=6,
兩式相減可得2x(x1-x2)+6y(y1-y2)=0,
y1-y2
x1-x2
=-
x
3y

∵弦AB的斜率為
y
x-1
,
y
x-1
=-
x
3y
,
化簡可得弦AB中點軌跡方程為x2+3y2-x=0.
(2)設(shè)直線AB方程為x=my+1,代入x2+3y2=6中,化簡得(m2+3)y2+2my-5=0,于是y1+y2=
-2m
m2+3
,y1y2=
-5
m2+3

S△ABF=S△AMF+S△BMF=
1
2
|AF||y1-y2|
,F(xiàn)(-2,0)
S2=
9
4
(y1-y2)2=
27(2m2+5)
(m2+3)2
=-27[
1
(m2+3)2
-
2
m2+3
]

t=
1
m2+3
,則0<t≤
1
3
S2=-27(t2-2t)=-27(t-1)2+27

t=
1
3
時,S有最大值,最大值為
15
點評:本題考查軌跡方程,考查直線與橢圓的位置關(guān)系,考查韋達定理的應(yīng)用,考查學(xué)生的計算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos(ωx+φ)(ω>0,|φ|≤
π
2
)的圖象如圖所示,則φ等于( 。
A、
π
3
B、
π
12
C、-
π
6
D、-
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

與30°角終邊相同的角的集合是( 。
A、{θ|θ=30°+k•360°,k∈Z}
B、{θ|θ=30°+2k•360°,k∈Z}
C、{θ|θ=30°+k•180°,k∈Z}
D、{θ|θ=30°+k•90°,k∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
2
-
1
2x+1

(1)證明函數(shù)f(x)是奇函數(shù);
(2)證明函數(shù)f(x)在(-∞,+∞)內(nèi)是增函數(shù);
(3)求函數(shù)f(x)在[1,2]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù):f(x)=
x+1-a
a-x
(a∈R且x≠a).
(1)證明:f(x)+2+f(2a-x)=0對定義域內(nèi)所有x都成立;
(2)若函數(shù)g(x)=x2+|(x-a)f(x)|在[a,a+1]的最小值為4,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項和為Sn,點2a5=a10,且S5=120.求an和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β都是非零實數(shù).若f(2010)=-1,求f(2011)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A、B、C的對邊分別為a、b、c,且1+
tanA
tanB
=
2c
b

(1)求角A;
(2)若a=
3
,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若把函數(shù)f(x)=ln(2x+4)圖象向右平移2個單位得新函數(shù)y=g(x),再把y=g(x)的圖象繞原點O逆時針旋轉(zhuǎn)角α后恰與y軸相切,則tanα=
 

查看答案和解析>>

同步練習(xí)冊答案