15.復(fù)數(shù)z滿足z(2-i)=2+i(i為虛數(shù)單位),則$\overline z$在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)所在象限為( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)的運(yùn)算法則、幾何意義、共軛復(fù)數(shù)的定義即可得出.

解答 解:∵z(2-i)=2+i,∴z(2-i)(2+i)=(2+i)(2+i),∴z=$\frac{1}{5}$(3+4i),
則$\overline z$=$\frac{3}{5}$-$\frac{4}{5}$i在復(fù)平面內(nèi)對(duì)應(yīng)的點(diǎn)($\frac{3}{5}$,-$\frac{4}{5}$)所在象限為第四象限.
故選:D.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義、共軛復(fù)數(shù)的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知集合A={x|x2-x>0},$B=\left\{{x\left|{-\sqrt{3}<x<\sqrt{3}}\right.}\right\}$,則( 。
A.A∩B=∅B.A∪B=RC.B⊆AD.A⊆B

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2$\sqrt{2}$sinθ.
(Ⅰ)將曲線C的極坐標(biāo)方程化為參數(shù)方程:
(Ⅱ)如果過曲線C上一點(diǎn)M且斜率為-$\sqrt{3}$的直線與直線l:y=-x+6交于點(diǎn)Q,那
么當(dāng)|MQ|取得最小值時(shí),求M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.為了更好地讓學(xué)生適應(yīng)高考網(wǎng)上閱卷,某學(xué)校針對(duì)該校20個(gè)班級(jí)進(jìn)行了“漢字與英語書法大賽”(每個(gè)班級(jí)只有一個(gè)指導(dǎo)老師),并調(diào)查了各班參加該比賽的學(xué)生人數(shù),根據(jù)所得數(shù)據(jù),分組成[0,5),[5,10),[10,15),[15,20),[20,25),[25,30),[30,35),[35,40]時(shí),所作的頻率分布直方圖如圖:
(1)如果從參加比賽的學(xué)生人數(shù)在25人以上(含25人)的班級(jí)中隨機(jī)選取2個(gè)指導(dǎo)老師頒發(fā)“參與組織獎(jiǎng)”,那么至少有一位來自“參與學(xué)生人數(shù)在[25,30)內(nèi)的班級(jí)”的指導(dǎo)老師獲獎(jiǎng)的概率是多少?
(2)如果從參加比賽的學(xué)生人數(shù)在25人以上(含25人)的班級(jí)中隨機(jī)選取3個(gè)指導(dǎo)老師頒發(fā)“參與組織獎(jiǎng)”,設(shè)“參與學(xué)生人數(shù)在[25,30)內(nèi)的班級(jí)”的指導(dǎo)老師獲獎(jiǎng)人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.過點(diǎn)A(1,t)于曲線y=x3-12x相切的直線有3條,則實(shí)數(shù)t的取值范圍為(-12,-11).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知x,y滿足約束條件$\left\{\begin{array}{l}{x-y+1≤0}\\{2x+y-a≥0}\\{y-2≤0}\end{array}\right.$,若目標(biāo)函數(shù)z=x-2y的最大值是-2,則實(shí)數(shù)a=(  )
A.-6B.-1C.1D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合A={x|x2+3x≤0},集合B={n|n=2k+1,k∈Z},則A∩B=(  )
A.{-1,1}B.{1,3}C.{-3,-1}D.{-3,-1,1,3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知2sinα•tanα=3,且0<α<π.
(1)求α的值;
(2)求函數(shù)f(x)=4sinxsin(x-α)在$[0,\frac{π}{4}]$上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A={3,a2},B={2,1-a,b},且A∩B={1},則A∪B=( 。
A.{0,1,3}B.{1,2,3}C.{1,2,4}D.{0,1,2,3}

查看答案和解析>>

同步練習(xí)冊(cè)答案