4.從所給的四個(gè)選項(xiàng)中,選擇最合適的一個(gè)填入問號處,使之呈現(xiàn)一定的規(guī)律性(  )
A.B.C.D.

分析 第一個(gè)方框中的三個(gè)組合,每個(gè)組合都是由十三條邊組成的.第二個(gè)方框中的三個(gè)組合,前兩個(gè)組合都是由十四條邊組成的,即可得出.

解答 解:第一個(gè)方框中的三個(gè)組合,每個(gè)組合都是由十三條邊組成的.
第二個(gè)方框中的三個(gè)組合,前兩個(gè)組合都是由十四條邊組成的,因此?處的圖形也應(yīng)該是由十四條邊組成的,四個(gè)選擇支中只有C是由十四條邊組成的.
故選:C.

點(diǎn)評 本題考查了圖形的規(guī)律性,注意觀察到每一個(gè)圖形找出其規(guī)律性是解題的關(guān)鍵,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.等差數(shù)列{an}中,a2=1,公差d=2,則a3=( 。
A.1B.3C.5D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合M={x|x2-x-2<0},P={x|x≤a},若M∩P=∅,則實(shí)數(shù)a的取值范圍是(  )
A.{a|a<-1}B.{a|a≥2}C.{a|-1<a<2}D.{a|a≤-1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.${(a\root{3}{x}-\frac{1}{{\sqrt{x}}})^5}$展開式中各項(xiàng)系數(shù)的和為32,則該展開式中的常數(shù)項(xiàng)為( 。
A.-540B.-270C.540D.270

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.學(xué)校為了解高二年級l203名學(xué)生對某項(xiàng)教改試驗(yàn)的意見,打算從中抽取一個(gè)容量為40的樣本,考慮用系統(tǒng)抽樣,則分段的間隔k為30.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.無窮數(shù)列 P:a1,a2,…,an,…,滿足ai∈N*,且ai≤ai+1(i∈N*),對于數(shù)列P,記Tk(P)=min{n|an≥k}(k∈N*),其中min{n|an≥k}表示集合{n|an≥k}中最小的數(shù).
(1)若數(shù)列P:1?3?4?7?…,則T5(P)=4;
(2)已知a20=46,則s=a1+a2+…+a20+T1(P)+T2(P)+…+T46(P)=966.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)數(shù)列{an}滿足a1=2,an+1=an2-nan+1,n=1,2,3,…,
(1)求a2,a3,a4
(2)猜想出{an}的一個(gè)通項(xiàng)公式,并用數(shù)學(xué)歸納法證明你的結(jié)論;
(3)設(shè)bn=$\frac{1}{a_n^2}$,數(shù)列{bn}的前n項(xiàng)和為Tn,求證:Tn<$\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)f(x)的定義域?yàn)椋?,1),函數(shù)y=f(x-2)的定義域?yàn)椋ā 。?table class="qanwser">A.(-2,-1)B.(0,2)C.(0,1)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合M={x|x=2n-1,n∈N},N={x|-x2+x+6>0},則M∩N的非空真子集個(gè)數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案