如圖是一個(gè)二次函數(shù)的圖象.
(1)寫出這個(gè)二次函數(shù)的零點(diǎn);
(2)寫出這個(gè)二次函數(shù)的解析式及時(shí)函數(shù)的值域

解 .(1)由圖可知這個(gè)二次函數(shù)的零點(diǎn)為 (4分)
(2)可設(shè)兩點(diǎn)式,又過點(diǎn),代入得, ,
其在中,時(shí)遞增,時(shí)遞減,最大值為   
,最大值為0,時(shí)函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c5/7/1tq6r4.gif" style="vertical-align:middle;" />

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題共12分)已知函數(shù).
(1)證明函數(shù)為減函數(shù);
(2)解關(guān)于的不等式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

計(jì)算下列各式的值:
(1) ;     (2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(13分)定義在R上的增函數(shù)y=f(x)對(duì)任意x,yR都有f(x+y)=f(x)+f(y),則
(1)求f(0)       (2) 證明:f(x)為奇函數(shù)
(3)若對(duì)任意恒成立,求實(shí)數(shù)k的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某化工廠生產(chǎn)的某種化工產(chǎn)品,當(dāng)年產(chǎn)量在150噸至250噸之間時(shí),其生產(chǎn)的總成本(萬元)與年產(chǎn)量(噸)之間的函數(shù)關(guān)系式近似地表示為.問:(1)每噸平均出廠價(jià)為16萬元,年產(chǎn)量為多少噸時(shí),可獲得最大利潤?并求出最大利潤;
(2)年產(chǎn)量為多少噸時(shí),每噸的平均成本最低?并求出最低成本。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分13分) 2010年11月在廣州召開亞運(yùn)會(huì),某小商品公司開發(fā)一種亞運(yùn)會(huì)紀(jì)念品,每件產(chǎn)品的成本是15元,銷售價(jià)是20元,月平均銷售a件,通過改進(jìn)工藝,產(chǎn)品的成本不變,質(zhì)量和技術(shù)含金量提高,市場(chǎng)分析的結(jié)果表明:如果產(chǎn)品的銷售價(jià)提高的百分率為x(0<x<1),那么月平均銷售量減少的百分率為x2,記改進(jìn)工藝后,該公司銷售紀(jì)念品的月平均利潤是y(元).
(1)寫出y與x的函數(shù)關(guān)系式;
(2)改進(jìn)工藝后,確定該紀(jì)念品的售價(jià),使該公司銷售該紀(jì)念品的月平均利潤最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題


(本小題滿分12分)
(1)求的定義域;
(2)問是否存在實(shí)數(shù)、,當(dāng)時(shí),的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/fc/e/rgw3.gif" style="vertical-align:middle;" />,且 若存在,求出的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(14分)已知f(x)是定義在[—1,1]上的奇函數(shù),且f (1)=1,若m,n∈[—
1,1],m+n≠0時(shí)有
(1)判斷f (x)在[—1,1]上的單調(diào)性,并證明你的結(jié)論;
(2)解不等式:
(3)若f (x)≤對(duì)所有x∈[—1,1],∈[—1,1]恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)是否存在實(shí)數(shù),使函數(shù)上的奇函數(shù),若不存在,說明理由,若存在實(shí)數(shù),求函數(shù)的值域;
(2)探索函數(shù)的單調(diào)性,并利用定義加以證明。

查看答案和解析>>

同步練習(xí)冊(cè)答案