A. | 2 | B. | 3 | C. | 4 | D. | 9 |
分析 要求(x1-x2)2+(y1-y2)2的最小值,只需(x1-x2)2的值最小,(y1-y2)2的值最小即可.
解答 解:由點(diǎn)(x2,y2)在函數(shù)y=3的圖象上,
可知:無論x2的值是多少,y2=3.
要使(x1-x2)2最小,只需x1=x2,
(y1-y2)2的值最小,只求函數(shù)y=sin2x到直線y=3的距離最短,
即函數(shù)y=sin2x的最大值到直線y=3的距離最短.
∴y1-y2的最小值為2.
那么:(x1-x2)2+(y1-y2)2的最小值為4.
故選C
點(diǎn)評(píng) 本題給出正弦型三角函數(shù)的圖象和直線y=3的關(guān)系最值的問題,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | 3 | C. | $2\sqrt{3}$ | D. | $\frac{{9\sqrt{3}}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | N⊆M | B. | M⊆N | C. | M∩N=N | D. | M∩N={1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 48 | B. | 24 | C. | 16 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com