精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=
4-x
的定義域為A,B={x|2x+3≥1}.
(1)求A∩B;
(2)設全集U=R,求?U(A∩B);
(3)若Q={x|2m-1≤x≤m+1},P=A∩B,Q⊆P,求實數m的取值范圍.
分析:(1)由根式內部的代數式大于等于0求解函數的定義域得到集合A,解依次不等式化簡集合B,利用交集運算求解A∩B;
(2)在(1)的基礎上直接利用補集運算求解?U(A∩B);
(3)由Q⊆P,分Q是空集和不是空集,借助于端點值的關系列不等式(組)求解實數m的取值范圍.
解答:解:(1)由4-x≥0,解得x≤4.
∴A={x|x≤4}.
B={x|2x+3≥1}={x|x≥-1}.
∴A∩B={x|-1≤x≤4};
(2)∵A∩B={x|-1≤x≤4},
∴CU(A∩B)={x|x<-1或x>4};
(3)P=A∩B={x|-1≤x≤4}
Q={x|2m-1≤x≤m+1},
當Q=∅時,2m-1>m+1,∴m>2.
滿足Q⊆P;
當Q≠∅時,要使Q⊆P,
2m-1≤m+1
m+1≤4
2m-1≥-1
,解得0≤m≤2.
綜上m≥0.
點評:本題考查了函數的定義域及其求法,考查了集合間的運算,考查了集合關系中的含參數的范圍問題,體現了分類討論的數學思想方法,解答的關鍵是對端點值的取舍,是中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=-
4+
1
x2
,數列{an},點Pn(an,-
1
an+1
)在曲線y=f(x)上(n∈N+),且a1=1,an>0.
( I)求數列{an}的通項公式;
( II)數列{bn}的前n項和為Tn且滿足bn=an2an+12,求Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=-
4-x2
在區(qū)間M上的反函數是其本身,則M可以是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=4+ax-1(a>0且a≠1)的圖象恒過定點P,則P點的坐標是
(1,5)
(1,5)

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=
(4-
a
2
)x+4,  x≤6
ax-5,     x>6
(a>0,a≠1),數列{an}滿足an=f(n)(n∈N*),且{an}是單調遞增數列,則實數a的取值范圍(  )

查看答案和解析>>

同步練習冊答案