(本題滿分11分)在△ABC中,內(nèi)角A,B,C對邊的邊長分別是a,b,c,已知c=2,C=.

(1)若△ABC的面積等于,求a,b;

(2)若sinC+sin(B-A)=2sin2A,求△ABC的面積.

 

【答案】

(1)a=2,b=2.(2)S=absinC=.

【解析】

試題分析:(1)由余弦定理及已知條件得,a2+b2-ab=4,…………2分

又因?yàn)椤鰽BC的面積等于,所以absinC=,得ab=4.…………4分

聯(lián)立方程組解得a=2,b=2.…………5分

(2)由題意得sin(B+A)+sin(B-A)=4sinAcosA,即sinBcosA=2sinAcosA,…………7分

當(dāng)cosA=0時(shí),A=,B=,a=,b=,…………8分

當(dāng)cosA≠0時(shí),得sinB=2sinA,由正弦定理得b=2a,聯(lián)立方程組

解得a=,b=.…………10分

所以△ABC的面積S=absinC=.…………11分

考點(diǎn):本題主要考查正弦定理、余弦定理的應(yīng)用,三角形內(nèi)角和定理,兩角和差的三角函數(shù)。

點(diǎn)評:典型題,本題在考查正弦定理、余弦定理的應(yīng)用,三角形內(nèi)角和定理,兩角和差的三角函數(shù)的同時(shí),考查了函數(shù)方程思想,在兩道小題中,均通過建立方程組,以便求的a,b,c等。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013屆廣東省高二文科數(shù)學(xué)競賽試卷(解析版) 題型:解答題

(本題滿分14分)

有甲乙兩個(gè)班級進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績后,得到如下的列聯(lián)表.

 

優(yōu)秀

非優(yōu)秀

總計(jì)

甲班

10

 

 

乙班

 

30

 

合計(jì)

 

 

105

已知在全部105人中抽到隨機(jī)抽取1人為優(yōu)秀的概率為

(1)請完成上面的列聯(lián)表;

(2)根據(jù)列聯(lián)表的數(shù)據(jù),若按的可靠性要求,能否認(rèn)為“成績與班級有關(guān)系” .

(3)若按下面的方法從甲班優(yōu)秀的學(xué)生抽取一人:把甲班優(yōu)秀的10名學(xué)生從2到11進(jìn)行編號(hào),先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)之和為被抽取人的序號(hào).試求抽到6或10號(hào)的概率.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分11分)設(shè)函數(shù)f (x)=x3x2ax

(Ⅰ)函數(shù)f (x)在(11, 2012)內(nèi)單調(diào)遞減,求a范圍;

(Ⅱ) 若實(shí)數(shù)a滿足1<a≤2,函數(shù)g(x)=4x3+3bx2-6(b+2)x (b∈R) 的極小值點(diǎn)與f (x)的極小值點(diǎn)相同,求證:g(x)的極大值小于等于10.

 

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分11分)張先生家住H小區(qū),他在C科技園區(qū)工作,從家開車到公司上班有L1L2兩條路線(如圖),L1路線上有A1,A2A3三個(gè)路口,各路口遇到紅燈的概率均為L2路線上有B1,B2兩個(gè)路口,各路口遇到紅燈的概率依次為,

(Ⅰ)若走L1路線,求最多遇到1次紅燈的概率;

(Ⅱ)若走L2路線,求遇到紅燈次數(shù)的數(shù)學(xué)期望;

(Ⅲ)按照“平均遇到紅燈次數(shù)最少”的要求,請你幫助張先生從上述兩條路線中選擇一條最好的上班路線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分11分)從1到9的九個(gè)數(shù)字中取三個(gè)偶數(shù)三個(gè)奇數(shù),組成沒有重復(fù)數(shù)字的6位數(shù)?試問:

(1)其中1在首位的有多少個(gè)?

(2)其中三個(gè)偶數(shù)字排在一起三個(gè)奇數(shù)字也排在一起的有多少個(gè)?

(3)其中任意兩偶然都不相鄰的六位數(shù)有多少個(gè)?

查看答案和解析>>

同步練習(xí)冊答案