20.經(jīng)過1小時(shí),時(shí)針旋轉(zhuǎn)的角是( 。
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

分析 由經(jīng)過1小時(shí),時(shí)針順時(shí)針旋轉(zhuǎn)周角的$\frac{1}{12}$得答案.

解答 解:經(jīng)過1小時(shí),時(shí)針順時(shí)針旋轉(zhuǎn)$\frac{360°}{12}=30°$,
而順時(shí)針旋轉(zhuǎn)的角為負(fù)角,∴經(jīng)過1小時(shí),時(shí)針旋轉(zhuǎn)的角是-30°,為第四象限角.
故選:D.

點(diǎn)評(píng) 本題考查象限角及軸線角,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=Asin(ωx+φ) $(A>0,ω>0,|φ|<\frac{π}{2})$的最小正周期為2,且當(dāng)x=$\frac{1}{3}$時(shí),f(x)取得最大值2.
(1)求函數(shù)f(x)的解析式.
(2)在閉區(qū)間[$\frac{21}{4}$,$\frac{23}{4}$]上是否存在f(x)圖象的對(duì)稱軸?如果存在,求出對(duì)稱軸方程;如果不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知f(x)=$\left\{\begin{array}{l}{2^x}+8,x≤0\\{log_3}x+ax,x>0\end{array}$,若f(f(0))=8a,則實(shí)數(shù)a等于( 。
A.2B.-2C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.函數(shù)g(x)=$\left\{\begin{array}{l}{{e}^{x-1},0≤x<1}\\{g(x-1),x≥1}\end{array}\right.$,則函數(shù)f(x)=g(x)-$\frac{x}{8}$的零點(diǎn)個(gè)數(shù)是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列判斷正確的是( 。
A.若x、y是實(shí)數(shù),則x2≠y2?x≠y或x≠-y
B.命題:“a,b都偶數(shù),則a+b是偶數(shù)”的逆否命題是“若a+b不是偶數(shù),則a,b都不是偶數(shù)”
C.若“p或q”為假命題,則“非p且非q”是真命題
D.已知a,b,c是實(shí)數(shù),關(guān)于x的不等式ax2+bx+c≤0的解集是空集,必有a>0且△≤0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某手機(jī)廠商推出一款6寸大屏手機(jī),現(xiàn)對(duì)500名該手機(jī)使用者(200名女性,300名男性)進(jìn)行調(diào)查,對(duì)手機(jī)進(jìn)行打分,打分的頻數(shù)分布表如表:
女性用戶:
分值區(qū)間[50,60)[60,70)[70,80)[80,90)[90,100]
頻數(shù)2040805010
男性用戶
分值區(qū)間[50,60)[60,70)[70,80)[80,90)[90,100]
頻數(shù)4575906030
(Ⅰ)如果評(píng)分不低于70分,就表示該用戶對(duì)手機(jī)“認(rèn)可”,否則就表示“不認(rèn)可”,完成下列2×2列聯(lián)表,并回答是否有95%的把握認(rèn)為性別和對(duì)手機(jī)的“認(rèn)可”有關(guān);
女性用戶男性用戶合計(jì)
“認(rèn)可”手機(jī)
“不認(rèn)可”手機(jī)
合計(jì)
P(X2≥k)0.050.01
k3.8416.635
X2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1+}{n}_{2+}{n}_{+1}{n}_{+2}}$
(Ⅱ)根據(jù)評(píng)分的不同,運(yùn)用分層抽樣從男性用戶中抽取20名用戶,在這20名用戶中,從評(píng)分不低于80分的用戶中任意抽取3名用戶,求3名用戶中評(píng)分小于90分的人數(shù)的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)(1-3x)8=a0+a1x+a2x2+…+a8xn,則a1+a2+a3+…+a8的值為255 (用具體數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,四棱錐P-ABCD的底面為平行四邊形,PD⊥平面ABCD,M為PC中點(diǎn).   
(1)求證:AP∥平面MBD;
(2)若AD⊥PB,PD=CD,求直線MB和平面ABCD所成角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知tanα=7,求值.
(1)$\frac{sinα+cosα}{2sinα-cosα}$=$\frac{8}{13}$;
(2)sin2α+sinαcosα+3cos2α=$\frac{59}{50}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案