【題目】如圖已知橢圓=1(a>b>0),F(xiàn)1、F2分別為橢圓的左、右焦點(diǎn),A為橢圓的上頂點(diǎn),直線AF2交橢圓于另一點(diǎn)B.

(1)若∠F1AB=90°求橢圓的離心率;

(2)若=2,·求橢圓的方程.

【答案】(1)(2)=1

【解析】(1)若∠F1AB=90°則△AOF2為等腰直角三角形,所以有OA=OF2,即b=c.所以a=c,e.

(2)由題知A(0,b),F1(-c,0),F2(c,0)

其中,c設(shè)B(xy).

=2,得(c-b)=2(x-c,y),

解得x=y=-,即B.

將B點(diǎn)坐標(biāo)代入=1,=1=1解得a23c2.

又由·=(-c,-b)·,得b2-c2=1,即有a22c2=1.②

由①②解得c2=1a2=3,從而有b2=2.

所以橢圓方程為=1.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】汽車的燃油效率是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )

A. 消耗1升汽油,乙車最多可行駛5千米

B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多

C. 甲車以80千米/小時(shí)的速度行駛1小時(shí),消耗10升汽油

D. 某城市機(jī)動(dòng)車最高限速80千米/小時(shí). 相同條件下,在該市用丙車比用乙車更省油

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是定義在[-1,1]上的奇函數(shù),且,若任意的,當(dāng)時(shí),總有

1)判斷函數(shù)[-1,1]上的單調(diào)性,并證明你的結(jié)論;

2)解不等式:;

3)若對(duì)所有的恒成立,其中是常數(shù)),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)的定義域?yàn)?/span>,且對(duì)任意,,且當(dāng)時(shí).

1)證明:是奇函數(shù);

2)證明:上是減函數(shù);

3)求在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】提高過(guò)江大橋的車輛通行能力可改善整個(gè)城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時(shí))是車流密度x(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200/千米時(shí),造成堵塞,此時(shí)車流速度為0;當(dāng)車流密度不超過(guò)20/千米時(shí),車流速度為60千米/小時(shí),研究表明:當(dāng)20≤x≤200時(shí),車流速度v是車流密度x的一次函數(shù).

1)當(dāng)0≤x≤200時(shí),求函數(shù)vx)的表達(dá)式;

2)當(dāng)車流密度x為多大時(shí),車流量(單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車輛數(shù),單位:輛/小時(shí))fx=xvx)可以達(dá)到最大,并求出最大值.(精確到1/小時(shí)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知拋物線Cy2=4x的焦點(diǎn)為F,直線l經(jīng)過(guò)點(diǎn)F且與拋物線C相交于AB兩點(diǎn).

(1)若線段AB的中點(diǎn)在直線y=2上,求直線l的方程;

(2)若線段|AB|=20,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率,橢圓上的點(diǎn)到左焦點(diǎn)的距離的最大值為.

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)已知直線與橢圓交于、兩點(diǎn).在軸上是否存在點(diǎn),使得,若存在,求出實(shí)數(shù)的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線C,點(diǎn)x軸的正半軸上,過(guò)點(diǎn)M的直線l與拋線C相交于AB兩點(diǎn),O為坐標(biāo)原點(diǎn).

,且直線l的斜率為1,求證:以AB為直徑的圓與拋物線C的準(zhǔn)線相切;

是否存在定點(diǎn)M,使得不論直線l繞點(diǎn)M如何轉(zhuǎn)動(dòng),恒為定值?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知、是橢圓)的左、右焦點(diǎn),過(guò)軸的垂線與交于

兩點(diǎn), 軸交于點(diǎn), ,且, 為坐標(biāo)原點(diǎn).

(1)求的方程;

(2)設(shè)為橢圓上任一異于頂點(diǎn)的點(diǎn), 、的上、下頂點(diǎn),直線、分別交軸于點(diǎn)、.若直線與過(guò)點(diǎn)的圓切于點(diǎn).試問: 是否為定值?若是,求出該定值;若不是,請(qǐng)說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案