若-
π
2
<α<β<
π
2
,α-β的取值范圍為(-π,π).
 
(對(duì)或錯(cuò))
考點(diǎn):不等式的基本性質(zhì)
專題:不等式的解法及應(yīng)用
分析:由-
π
2
<α<β<
π
2
,利用不等式的基本性質(zhì)即可得出-π<α-β<0.
解答: 解:∵-
π
2
<α<β<
π
2

∴-π<α-β<0,
因此α-β的取值范圍為(-π,π)是錯(cuò)誤的.
故答案為:錯(cuò).
點(diǎn)評(píng):本題考查了不等式的基本性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,平面α、β、r兩兩相交,a、b、c為三條交線,且a∥b,問:a與c,b與c之間有什么關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:若f(x)對(duì)定義域內(nèi)的任意x都有f(x+a)=
1-f(x)
1+f(x)
(a≠0),則T=2a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若α是一個(gè)三角形的內(nèi)角,且sinα+cosα=α(0<α<1),則這個(gè)三角形是( 。
A、等邊三角形
B、直角三角形
C、銳角三角形
D、鈍角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果存在一個(gè)非零常數(shù)T,使得定義在R上的函數(shù)y=f(x)滿足f(x-T)=Tf(x)對(duì)任意實(shí)數(shù)x恒成立,則稱函數(shù)f(x)為“T周轉(zhuǎn)函數(shù)”,現(xiàn)有如下命題:
①當(dāng)T=-1時(shí),T周轉(zhuǎn)函數(shù)f(x)是以2為周期的周期函數(shù);
②函數(shù)f(x)=x一定是一個(gè)T周轉(zhuǎn)函數(shù);
③函數(shù)f(x)=sinπx一定是一個(gè)T周轉(zhuǎn)函數(shù);
④若f(x)為一個(gè)2周轉(zhuǎn)函數(shù),且x∈[0,2],f(x)=1-|x-1|,則函數(shù)F(x)=xf(x)-1的零點(diǎn)的個(gè)數(shù)為5.
其中的真命題有
 
.(寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:sin2α•tanα+cos2α•cotα+2sinα•cosα=tanα+cotα.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=lg[log
1
2
(1+tanx)]的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明:若f(x)對(duì)定義域內(nèi)的任意x都有f(x+a)=-
1
f(x)
(a≠0),則T=2a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p2+q2=2,求證:p+q≤2.

查看答案和解析>>

同步練習(xí)冊答案