在平面直角坐標(biāo)系中,已知向量
a
=(1,-2),
a
-
b
=(2,-3),
c
=(x,9),若(2
a
+
b
)∥
c
,則x=( 。
A、-2B、-4C、-3D、-1
考點(diǎn):平面向量共線(xiàn)(平行)的坐標(biāo)表示
專(zhuān)題:平面向量及應(yīng)用
分析:直接利用向量的平行的充要條件,化簡(jiǎn)求解即可.
解答: 解:向量
a
=(1,-2),
a
-
b
=(2,-3),
c
=(x,9),
∴2
a
+
b
=3
a
-(
a
-
b
)=(1,-3),
∵(2
a
+
b
)∥
c
,
∴1×9=-3x,
解得x=-3.
故選:C.
點(diǎn)評(píng):本題考查向量的坐標(biāo)運(yùn)算,向量平行的充要條件的應(yīng)用,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若集合A={x|(a-1)x2+3x-2=0,x∈R}有且僅有兩個(gè)不同的子集,則實(shí)數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=sin2x+2
3
sin2x的最小正周期T為( 。
A、π
B、2π
C、
π
2
D、
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知冪函數(shù)f(x)=xα的圖象經(jīng)過(guò)點(diǎn)(2,8),則這個(gè)函數(shù)解析式是f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程x2+y2+x+2my+m2+m-1=0表示圓,則m的取值范圍是(  )
A、-2<m<0
B、-2<m<
5
4
C、m>
5
4
D、m<
5
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-4=0},集合B={x|x2-x-6=0},全集U={-2,-1,0,2,3}.求A∪B,A∩B,∁UB與∁UB所有子集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|-1<x<2},B={x|x<a}.
(Ⅰ)若a=1,求A∩B;
(Ⅱ)若A∩B=A,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)(x∈R)滿(mǎn)足f(x+2)=f(x),且x∈[-1,1]時(shí),f(x)=-|x|+1,則當(dāng)x∈(0,6]時(shí),函數(shù)g(x)=f(x)-log3x的零點(diǎn)個(gè)數(shù)為( 。
A、5B、6C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=3,前n項(xiàng)和為Sn,且2Sn=(n+1)an+n-1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=
1
anan+1
,數(shù)列{bn}的前n項(xiàng)和為T(mén)n,若Tn≤M對(duì)一切正整數(shù)n都成立,求出M的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案