20.函數(shù)$f(x)=\frac{1}{{\sqrt{{{log}_2}^{(2x-1)}}}}$的定義域為(  )
A.(1,+∞)B.$(\frac{1}{2},+∞)$C.$(\frac{1}{2},1)∪(1,+∞)$D.[1,+∞)

分析 由分母中根式內(nèi)部的代數(shù)式大于0,然后求解對數(shù)不等式得答案.

解答 解:要使原函數(shù)有意義,則log2(2x-1)>0,即2x-1>1,∴x>1.
∴函數(shù)$f(x)=\frac{1}{{\sqrt{{{log}_2}^{(2x-1)}}}}$的定義域為(1,+∞).
故選:A.

點評 本題考查函數(shù)的定義域及其求法,考查了對數(shù)不等式的解法,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

10.在直角坐標系x0y中,以0為極點,x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為$ρcos(θ-\frac{π}{3})=1$,M,N分別為C與x軸,y軸的交點.(0≤θ<2π)
(1)寫出C的直角坐標方程;
(2)設(shè)線段MN的中點為P,求直線OP的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.拋物線y=4x2的焦點到準線的距離是( 。
A.1B.$\frac{1}{4}$C.$\frac{1}{8}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.“m=-1”是“直線x+y=0和直線x+my=0互相垂直”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.在長方體ABCD-A1B1C1D1中,已知DA=DC=2,DD1=1,則異面直線A1B與B1C所成角的余弦值$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設(shè)x∈R,定義符號函數(shù)sng(x)=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$,則下列正確的是(  )
A.sinx•sng(x)=sin|x|.B.sinx•sng(x)=|sinx|C.|sinx|•sng(x)=sin|x|D.sin|x|•sng(x)=|sinx|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.函數(shù)$f(x)=2sin(2x+\frac{π}{6})$的部分圖象如圖所示.
(1)寫出f(x)的最小正周期及圖中x0、y0的值;
(2)求f(x)在區(qū)間$[-\frac{π}{4},\frac{π}{2}]$上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知f(x)=x2-ax+lnx,a∈R.
(1)當a=3時,求函數(shù)f(x)的極小值;
(2)令g(x)=x2-f(x),是否存在實數(shù)a,當x∈[1,e](e是自然對數(shù)的底數(shù))時,函數(shù)g(x)取得最小值為1.若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.圓C1:(x-1)2+(y-3)2=9和C2:x2+(y-2)2=1,M,N分別是圓C1,C2上的點,P是直線y=-1上的點,則|PM|+|PN|的最小值是(  )
A.5$\sqrt{2}$-4B.$\sqrt{17}$-1C.6-2$\sqrt{2}$D.$\sqrt{17}$

查看答案和解析>>

同步練習冊答案