【題目】已知橢圓的左、右頂點(diǎn)分別為,,左、右焦點(diǎn)分別為,,離心率為,點(diǎn),為線段的中點(diǎn).
()求橢圓的方程.
()若過點(diǎn)且斜率不為的直線與橢圓交于、兩點(diǎn),已知直線與相交于點(diǎn),試判斷點(diǎn)是否在定直線上?若是,請(qǐng)求出定直線的方程;若不是,請(qǐng)說明理由.
【答案】(1);(2)點(diǎn)在定直線上.
【解析】
試題分析: (Ⅰ)求橢圓標(biāo)準(zhǔn)方程,一般方法為待定系數(shù)法,即根據(jù)條件建立關(guān)于的兩個(gè)獨(dú)立條件,再與聯(lián)立方程組,解出的值,(Ⅱ)先根據(jù)特殊直線或橢圓幾何性質(zhì)確定定直線,再根據(jù)條件證明點(diǎn)橫坐標(biāo)為1.由題意設(shè)兩點(diǎn)坐標(biāo),用兩點(diǎn)坐標(biāo)表示點(diǎn)橫坐標(biāo).根據(jù)直線方程與橢圓方程聯(lián)立方程組,利用韋達(dá)定理得兩點(diǎn)坐標(biāo)關(guān)系(用直線斜率表示),并代入點(diǎn)橫坐標(biāo)表達(dá)式,化簡(jiǎn)可得為定值.
試題解析: (Ⅰ)設(shè)點(diǎn),由題意可知:,即 ①
又因?yàn)闄E圓的離心率,即 ②
聯(lián)立方程①②可得:,則
所以橢圓的方程為.
(Ⅱ)方法一:根據(jù)橢圓的對(duì)稱性猜測(cè)點(diǎn)是與軸平行的直線上.
假設(shè)當(dāng)點(diǎn)為橢圓的上頂點(diǎn)時(shí),直線的方程為,此時(shí)點(diǎn) ,
則聯(lián)立直線和直線可得點(diǎn)
據(jù)此猜想點(diǎn)在直線上,下面對(duì)猜想給予證明:
設(shè),聯(lián)立方程可得:
由韋達(dá)定理可得, (*)
因?yàn)橹本,,
聯(lián)立兩直線方程得(其中為點(diǎn)的橫坐標(biāo))即證:,
即,即證
將(*)代入上式可得
此式明顯成立,原命題得證.所以點(diǎn)在定直線上上.
方法二:設(shè),兩兩不等,
因?yàn)?/span>三點(diǎn)共線,所以,
整理得:
又三點(diǎn)共線,有: ①
又三點(diǎn)共線,有: ② 將①與②兩式相除得:
即,
將即代入得:
解得(舍去)或,所以點(diǎn)在定直線上.
方法三:顯然與軸不垂直,設(shè)的方程為,.
由得.
設(shè),兩兩不等,
則,,
由三點(diǎn)共線,有: ①
由三點(diǎn)共線,有: ②
①與②兩式相除得:
解得(舍去)或,所以點(diǎn)在定直線上.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形與梯形所在的平面互相垂直, ,,點(diǎn)在線段上.
(Ⅰ) 若點(diǎn)為的中點(diǎn),求證:平面;
(Ⅱ) 求證:平面平面;
(Ⅲ) 當(dāng)平面與平面所成二面角的余弦值為時(shí),求的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有關(guān)于的一元二次方程.
(Ⅰ)若是從四個(gè)數(shù)中任取的一個(gè)數(shù),是從三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.
(Ⅱ)若是從區(qū)間任取的一個(gè)數(shù),是從區(qū)間任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(m,n為常數(shù)),在處的切線方程為.
(Ⅰ)求的解析式并寫出定義域;
(Ⅱ)若,使得對(duì)上恒有成立,求實(shí)數(shù)的取值范圍;
(Ⅲ)若有兩個(gè)不同的零點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)在圓外,過點(diǎn)作圓的切線,設(shè)切點(diǎn)為.
(1)若點(diǎn)運(yùn)動(dòng)到處,求此時(shí)切線的方程;
(2)求滿足的點(diǎn)的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期 | 12月2日 | 12月3日 | 12月4日 |
溫差() | 11 | 13 | 12 |
發(fā)芽數(shù)(顆) | 25 | 30 | 26 |
(1)請(qǐng)根據(jù)12月2日至12月4日的數(shù)據(jù),求出關(guān)于的線性回歸方程;
(2)該農(nóng)科所確定的研究方案是:先用上面的3組數(shù)據(jù)求線性回歸方程,再選取2組數(shù)據(jù)進(jìn)行檢驗(yàn).若12月5日溫差為,發(fā)芽數(shù)16顆,12月6日溫差為,發(fā)芽數(shù)23顆.由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(1)中所得的線性回歸方程是否可靠?
注:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為,A是橢圓短軸的一個(gè)端點(diǎn),直線AF與橢圓另一交點(diǎn)為B,且.
(1)求橢圓方程;
(2)若斜率為1的直線l交橢圓于C,D,且CD為底邊的等腰三角形的頂點(diǎn)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】求滿足下列條件的曲線的方程:
(1)離心率為,長(zhǎng)軸長(zhǎng)為6的橢圓的標(biāo)準(zhǔn)方程
(2)與橢圓有相同焦點(diǎn),且經(jīng)過點(diǎn)的雙曲線的標(biāo)準(zhǔn)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了分析某個(gè)高三學(xué)生的學(xué)習(xí)狀態(tài).現(xiàn)對(duì)他前5次考試的數(shù)學(xué)成績(jī)x,物理成績(jī)y進(jìn)行分析.下面是該生前5次考試的成績(jī).
數(shù)學(xué) | 120 | 118 | 116 | 122 | 124 |
物理 | 79 | 79 | 77 | 82 | 83 |
附..
已知該生的物理成績(jī)y與數(shù)學(xué)成績(jī)x是線性相關(guān)的,求物理成績(jī)y與數(shù)學(xué)成績(jī)x的回歸直線方程;
我們常用來刻畫回歸的效果,其中越接近于1,表示回歸效果越好.求.
已知第6次考試該生的數(shù)學(xué)成績(jī)達(dá)到132,請(qǐng)你估計(jì)第6次考試他的物理成績(jī)大約是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com