已知雙同線的兩個焦點為的曲線C上.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)記O為坐標原點,過點Q(0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為求直線l的方程
(Ⅰ)解法1:依題意,由a2+b2=4,得雙曲線方程為(0<a2<4), 將點(3,)代入上式,得.解得a2=18(舍去)或a2=2, 故所求雙曲線方程為 解法2:依題意得,雙曲線的半焦距c=2. 2a=|PF1|-|PF2|= ∴a2=2,b2=c2-a2=2. ∴雙曲線C的方程為 (Ⅱ)解法1:依題意,可設(shè)直線l的方程為y=kx+2,代入雙曲線C的方程并整理, 得(1-k2)x2-4kx-6=0. ∵直線l與雙曲線C相交于不同的兩點E、F, ∴ ∴k∈(-)∪(1,). 設(shè)E(x1,y1),F(x2,y2),則由①式得x1+x2=于是 |EF|= = 而原點O到直線l的距離d=, ∴SΔOEF= 若SΔOEF=,即解得k=±, 滿足②.故滿足條件的直線l有兩條,其方程分別為y=和 解法2:依題意,可設(shè)直線l的方程為y=kx+2,代入雙曲線C的方程并整理, 得(1-k2)x2-4kx-6=0. ① ∵直線l與比曲線C相交于不同的兩點E、F, ∴ ∴k∈(-)∪(1,). 、 設(shè)E(x1,y1),F(x2,y2),則由①式得 |x1-x2|=. 、 當(dāng)E、F在同一支上時(如圖1所示), SΔOEF=|SΔOQF-SΔOQE|=; 當(dāng)E、F在不同支上時(如圖2所示), SΔOEF=SΔOQF+SΔOQE= 綜上得SΔOEF=,于是 由|OQ|=2及③式,得SΔOEF=. 若SΔOEF=2,即,解得k=±,滿足②. 故滿足條件的直線l有兩條,基方程分別為y=和y= 本小題主要考查雙曲線的定義、標準方程、直線和雙曲線位置關(guān)系等平面解析幾何的基礎(chǔ)知識,考查待寫系數(shù)法、不等式的解法以及綜合運用數(shù)學(xué)知識進行推理運算的能力.(滿分13分) |
科目:高中數(shù)學(xué) 來源: 題型:
(08年湖北卷文)(本小題滿分13分)
已知雙同線的兩個焦點為
的曲線C上.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)記O為坐標原點,過點Q (0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為求直線l的方程
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com