3.橢圓短軸的一個端點是(3,0),焦距為4,該橢圓的方程是$\frac{{y}^{2}}{25}+\frac{{x}^{2}}{9}=1$.

分析 利用已知條件求出橢圓的幾何量,寫出橢圓方程即可.

解答 解:橢圓短軸的一個端點是(3,0),焦距為4,
可知橢圓的焦點坐標(biāo)在y軸上,b=3,c=4,則a=5,
該橢圓的方程是:$\frac{{y}^{2}}{25}+\frac{{x}^{2}}{9}=1$.
故答案為:$\frac{{y}^{2}}{25}+\frac{{x}^{2}}{9}=1$.

點評 本題考查橢圓的簡單性質(zhì)以及橢圓方程的求法,判斷焦點坐標(biāo)所在的軸是易錯點.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在正三棱錐S-ABC中,M是SC的中點,且AM⊥SB,底面邊長AB=2$\sqrt{2}$,則正三棱錐S-ABC的外接球的體積為( 。
A.$\sqrt{6}π$B.$4\sqrt{3}π$C.$4\sqrt{2}π$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)f(x)=ax5+bx3-x+2(a,b為常數(shù)),且f(-2)=5,則f(2)=(  )
A.-1B.-5C.1D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M:x2+y2-12x-14y+60=0及其上一點A(2,4).
(1)設(shè)圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程;
(2)設(shè)平行于OA的直線l與圓M相交于B,C兩點,且|BC|=|OA|,求直線l的方程;
(3)設(shè)點T(t,0)滿足:存在圓M上的兩點P和Q,使得$\overrightarrow{TA}$+$\overrightarrow{TP}$=$\overrightarrow{TQ}$,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在正方體ABCD-A1B1C1D1中,則異面直線AD1與A1C1所成角的余弦值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知正項數(shù)列{an}滿足:a1=$\frac{3}{2}$,an+1=$\frac{3{a}_{n}}{2{a}_{n}+3}$.
(1)證明{$\frac{1}{{a}_{n}}$}為等差數(shù)列,并求通項an
(2)若數(shù)列{bn}滿足bn•an=3(1-$\frac{1}{{2}^{n}}$),求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.今年入秋以來,某市多有霧霾天氣,空氣污染較為嚴(yán)重.市環(huán)保研究所對近期每天的空氣污染情況進(jìn)行調(diào)査研究后發(fā)現(xiàn),每一天中空氣污染指數(shù)與f(x)時刻x(時)的函數(shù)關(guān)系為f(x)=|log25(x+1)-a|+2a+1,x∈[0,24],其中a為空氣治理調(diào)節(jié)參數(shù),且a∈(0,1).
(1)若a=$\frac{1}{2}$,求一天中哪個時刻該市的空氣污染指數(shù)最低;
(2)規(guī)定每天中f(x)的最大值作為當(dāng)天的空氣污染指數(shù),要使該市每天的空氣污染指數(shù)不超過3,則調(diào)節(jié)參數(shù)a應(yīng)控制在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某產(chǎn)品在某零售攤位的零售價y(單位:元)與每天的銷售量y(單位:個)的統(tǒng)計資料如表所示,
x16171819
y50344131
由表可得回歸方程$\widehat{y}$=$\widehat{a}$-4x,據(jù)次模型預(yù)測零售價為20元時,每天銷售量為( 。
A.26個B.27個C.28個D.29個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.若圓C1:x2+y2=m與圓C2:x2+y2-6x-8y+16=0相外切.
(1)求m的值;
(2)若圓C1與x軸的正半軸交于點A,與y軸的正半軸交于點B,P為第三象限內(nèi)一點且在圓C1上,直線PA與y軸交于點M,直線PB與x軸交于點N,求證:四邊形ABNM的面積為定值.

查看答案和解析>>

同步練習(xí)冊答案