【題目】在矩形ABCD中,對角線AC分別與AB,AD所成的角為α,β,則sin2α+sin2β=1,在長方體ABCD﹣A1B1C1D1中,對角線AC1與棱AB,AD,AA1所成的角分別為α1,α2,α3,與平面AC,平面AB1,平面AD1所成的角分別為β1,β2,β3,則下列說法正確的是( 。
①sin2α1+sin2α2+sin2α3=1 、sin2α1+sin2α2+sin2α3=2
③cos2α1+cos2α2+cos2α3=1 ④sin2β1+sin2β2+sin2β3=1
A. ①③B. ②③C. ①③④D. ②③④
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l1:2x﹣y+2=0與l2:x+y+4=0.
(1)若一條光線從l1與l2的交點射出,與x軸交于點P(3,0),且經(jīng)x軸反射,求反射光線所在直線的方程;
(2)若直線l經(jīng)過點P(3,0),且它夾在直線l1與l2之間的線段恰被點P平分,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù),.
(1)判斷函數(shù):在的單調(diào)性;
(2)對于區(qū)間上的任意不相等實數(shù)、,都有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)滿足,且.
求的解析式;
設(shè),若存在實數(shù)a、b使得,求a的取值范圍;
若對任意,都有恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)是兩條不同的直線,是三個不同的平面,給出下列四個命題:
①若則
②若則
③若則
④若則
其中正確命題的序號是( )
A.①和③B.②和③C.②和④D.①和④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于實數(shù)符號表示不超過x的最大整數(shù),例如定義函數(shù)則下列命題正確中的是__________
(1)函數(shù)的最大值為1;
(2)函數(shù)是增函數(shù);
(3)方程有無數(shù)個根;
(4)函數(shù)的最小值為0.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐E-ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(I)求棱錐C-ADE的體積;
(II)求證:平面ACE⊥平面CDE;
(III)在線段DE上是否存在一點F,使AF∥平面BCE?若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com