A. | $1-\frac{{\sqrt{3}}}{2}$ | B. | $\sqrt{3}-1$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{3}$ |
分析 作圖,設(shè)置線段的長度,作點(diǎn)M恰好使得AM=AC,由幾何幾何概型可得結(jié)論.
解答 解:如圖,不妨設(shè)BC=1,則AB=2,AC=$\sqrt{3}$,
圖中點(diǎn)M恰好使得AM=AC=$\sqrt{3}$,
∴當(dāng)點(diǎn)位于BM段時(shí),滿足|AM|>|AC|,
由三角形的知識(shí)易得∠BCM=15°,
∴使|AM|>|AC|的概率P=$\frac{15}{90}$=$\frac{1}{6}$.
故選:C,
點(diǎn)評(píng) 本題考查幾何概型,作圖是解決問題的關(guān)鍵,屬基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 計(jì)算1+3+5+…+2012 | |
B. | 計(jì)算1×3×5×…×2012 | |
C. | 求方程1×3×5×…×i=2012中的i值 | |
D. | 求滿足1×3×5×…×i>2012的最小整數(shù)i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com