設橢圓的中心是坐標原點,長軸
在軸上,離心率
,已知點
到這個橢圓上的最遠距離是
,求這個橢圓的方程.
【錯解分析】依題意可設橢圓方程為
則
,所以
,即
設橢圓上的點
到點
的距離為
,則
所以當
時,
有最大值,從而
也有最大
值。所以
,由此解得:
于是所求橢圓的方程為
【正解】若
,則當
時,
(從而
)有最大值.于是
從而解得
.所以必有
,此時當
時,
(從而
)有最大值,
所以
,解得
于是所求橢圓的方程為
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知正方形ABCD 對角線AC所在直線方程為
.拋物線
過B,D兩點
(1)若正方形中心M為(2,2)時,求點N(b,c)的軌跡方程。
(2)求證方程
的兩實根
,
滿足
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)已知橢圓C
1:
的離心率為
,直線
l: y-=x+2與.以原點為圓心、橢圓C
1的短半軸長為半徑的圓O相切.
(1)求橢圓C
1的方程;
(ll)設橢圓C
1的左焦點為F
1,右焦點為F
2,直線
l2過點F價且垂直于橢圓的長軸,動直線
l2垂直于
l1,垂足為點P,線段PF
2的垂直平分線交
l2于點M,求點M的軌跡C
2的方程;
(III)過橢圓C
1的左頂點A作直線m,與圓O相交于兩點R,S,若△ORS是鈍角三角形, 求直線m的斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)設直線
與橢圓
相交于
兩個不同的點,與
軸相交于點
,記
為坐標原點.
(1)證明:
(2)若
且
的面積及橢圓方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分15分)
給定橢圓C:
,稱圓心在原點O、半徑是
的圓為橢圓C的“準圓”.已知橢圓C的一個焦點為
,其短軸的一個端點到點
的距離為
.
(1)求橢圓C和其“準圓”的方程;
(2)若點
是橢圓C的“準圓”與
軸正半軸的交點,
是橢圓C上的兩相異點,且
軸,求
的取值范圍;
(3)在橢圓C的“準圓”上任取一點
,過點
作直線
,使得
與橢圓C都只有一個交點,試判斷
是否垂直?并說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
中心在坐標原點的橢圓,焦點在x軸上,焦距為4,離心率為
,則該橢圓的方程為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知P為拋物線
上的動點,點P在x軸上的射影為M,點A的坐標是
,則
的最小值是( )
A.8 | B. | C.10 | D. |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在平面直角坐標系
中,
是半圓
的直徑,
是半圓
(除端點
)上的任意一點.在線段
的延長線上取點
,使
,試求動點
的軌跡方程
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
平面
、
、
兩兩垂直,定點
,A到
、
距離都是1,P是
上動點,P到
的距離等于P到點
的距離,則P點軌跡上的點到
距離的最小值是
.
查看答案和解析>>